119 research outputs found

    Matched Filtering of Numerical Relativity Templates of Spinning Binary Black Holes

    Full text link
    Tremendous progress has been made towards the solution of the binary-black-hole problem in numerical relativity. The waveforms produced by numerical relativity will play a role in gravitational wave detection as either test-beds for analytic template banks or as template banks themselves. As the parameter space explored by numerical relativity expands, the importance of quantifying the effect that each parameter has on first the detection of gravitational waves and then the parameter estimation of their sources increases. In light of this, we present a study of equal-mass, spinning binary-black-hole evolutions through matched filtering techniques commonly used in data analysis. We study how the match between two numerical waveforms varies with numerical resolution, initial angular momentum of the black holes and the inclination angle between the source and the detector. This study is limited by the fact that the spinning black-hole-binaries are oriented axially and the waveforms only contain approximately two and a half orbits before merger. We find that for detection purposes, spinning black holes require the inclusion of the higher harmonics in addition to the dominant mode, a condition that becomes more important as the black-hole-spins increase. In addition, we conduct a preliminary investigation of how well a template of fixed spin and inclination angle can detect target templates of arbitrary spin and inclination for the axial case considered here

    Zoom-Whirl Orbits in Black Hole Binaries

    Full text link
    Zoom-whirl behavior has the reputation of being a rare phenomenon. The concern has been that gravitational radiation would drain angular momentum so rapidly that generic orbits would circularize before zoom-whirl behavior could play out, and only rare highly tuned orbits would retain their imprint. Using full numerical relativity, we catch zoom-whirl behavior despite dissipation. The larger the mass ratio, the longer the pair can spend in orbit before merging and therefore the more zooms and whirls seen. Larger spins also enhance zoom-whirliness. An important implication is that these eccentric orbits can merge during a whirl phase, before enough angular momentum has been lost to truly circularize the orbit. Waveforms will be modulated by the harmonics of zoom-whirls, showing quiet phases during zooms and louder glitches during whirls.Comment: Replaced with published versio

    Probing the Binary Black Hole Merger Regime with Scalar Perturbations

    Full text link
    We present results obtained by scattering a scalar field off the curved background of a coalescing binary black hole system. A massless scalar field is evolved on a set of fixed backgrounds, each provided by a spatial hypersurface generated numerically during a binary black hole merger. We show that the scalar field scattered from the merger region exhibits quasinormal ringing once a common apparent horizon surrounds the two black holes. This occurs earlier than the onset of the perturbative regime as measured by the start of the quasinormal ringing in the gravitational waveforms. We also use the scalar quasinormal frequencies to associate a mass and a spin with each hypersurface, and observe the compatibility of this measure with the horizon mass and spin computed from the dynamical horizon framework.Comment: 10 Pages and 6 figure
    • …
    corecore