29 research outputs found

    The Effects of Exercise Training and High Triglyceride Diet in an Estrogen Depleted Rat Model

    Get PDF
    Cardiovascular morbidity and mortality of premenopausal women are significantly lower compared to men of similar age. However, this protective effect evidently decreases after the onset of menopause. We hypothesized that physical exercise could be a potential therapeutic strategy to improve inflammatory processes and cardiovascular antioxidant homeostasis, which can be affected by the loss of estrogen and the adverse environmental factors, such as overnutrition. Ovariectomized (OVX, n= 40) and sham-operated (SO, n= 40) female Wistar rats were randomized to exercising (R) and non-exercising (NR) groups. Feeding parameters were chosen to make a standard chow (CTRL) or a high triglyceride diet (HT) for 12 weeks. Aortic and cardiac heme oxygenase (HO) activity and HO-1 concentrations significantly decreased in all of the NR OVX and SO HT groups. However, the 12-week physical exercise was found to improve HO-1 values. Plasma IL-6 concentrations were higher in the NR OVX animals and rats fed HT diet compared to SO CTRL rats. TNF-α concentrations were significantly higher in the NR OVX groups. 12 weeks of exercise significantly reduced the concentrations of both TNF-α and IL-6 compared to the NR counterparts. The activity of myeloperoxidase enzyme (MPO) was significantly increased as a result of OVX and HT diet, however voluntary wheel-running exercise restored the elevated values. Our results show that estrogen deficiency and HT diet caused a significant decrease in the activity and concentration of HO enzyme, as well as the concentrations of TNF-α, IL-6, and the activity of MPO. However, 12 weeks of voluntary wheel-running exercise is a potential non-pharmacological therapy to ameliorate these disturbances, which determine the life expectancy of postmenopausal women

    Survival Comes at a Cost: A Coevolution of Phage and Its Host Leads to Phage Resistance and Antibiotic Sensitivity of Pseudomonas aeruginosa Multidrug Resistant Strains

    Get PDF
    The increasing ineffectiveness of traditional antibiotics and the rise of multidrug resistant (MDR) bacteria have necessitated the revival of bacteriophage (phage) therapy. However, bacteria might also evolve resistance against phages. Phages and their bacterial hosts coexist in nature, resulting in a continuous coevolutionary competition for survival. We have isolated several clinical strains of Pseudomonas aeruginosa and phages that infect them. Among these, the PIAS (Phage Induced Antibiotic Sensitivity) phage belonging to the Myoviridae family can induce multistep genomic deletion in drug-resistant clinical strains of P. aeruginosa, producing a compromised drug efflux system in the bacterial host. We identified two types of mutant lines in the process: green mutants with SNPs (single nucleotide polymorphisms) and smaller deletions and brown mutants with large (∼250 kbp) genomic deletion. We demonstrated that PIAS used the MexXY-OprM system to initiate the infection. P. aeruginosa clogged PIAS phage infection by either modifying or deleting these receptors. The green mutant gaining phage resistance by SNPs could be overcome by evolved PIASs (E-PIASs) with a mutation in its tail-fiber protein. Characterization of the mutant phages will provide a deeper understanding of phage-host interaction. The coevolutionary process continued with large deletions in the same regions of the bacterial genomes to block the (E-)PIAS infection. These mutants gained phage resistance via either complete loss or substantial modifications of the phage receptor, MexXY-OprM, negating its essential role in antibiotic resistance. In vitro and in vivo studies indicated that combined use of PIAS and antibiotics could effectively inhibit P. aeruginosa growth. The phage can either eradicate bacteria or induce antibiotic sensitivity in MDR-resistant clinical strains. We have explored the potential use of combination therapy as an alternative approach against MDR P. aeruginosa infection
    corecore