6 research outputs found

    Identifying high school risk factors that forecast heavy drinking onset in understudied young adults

    Get PDF
    Heavy alcohol drinking is a major, preventable problem that adversely impacts the physical and mental health of US young adults. Studies seeking drinking risk factors typically focus on young adults who enrolled in 4-year residential college programs (4YCP) even though most high school graduates join the workforce, military, or community colleges. We examined 106 of these understudied young adults (USYA) and 453 4YCPs from the National Consortium on Alcohol and NeuroDevelopment in Adolescence (NCANDA) by longitudinally following their drinking patterns for 8 years from adolescence to young adulthood. All participants were no-to-low drinkers during high school. Whereas 4YCP individuals were more likely to initiate heavy drinking during college years, USYA participants did so later. Using mental health metrics recorded during high school, machine learning forecasted individual-level risk for initiating heavy drinking after leaving high school. The risk factors differed between demographically matched USYA and 4YCP individuals and between sexes. Predictors for USYA drinkers were sexual abuse, physical abuse for girls, and extraversion for boys, whereas 4YCP drinkers were predicted by the ability to recognize facial emotion and, for boys, greater openness. Thus, alcohol prevention programs need to give special consideration to those joining the workforce, military, or community colleges, who make up the majority of this age group

    Brain Dynamics Underlying Cognitive Flexibility Across the Lifespan

    No full text
    Abstract The neural mechanisms contributing to flexible cognition and behavior and how they change with development and aging are incompletely understood. The current study explored intrinsic brain dynamics across the lifespan using resting-state fMRI data (n = 601, 6–85 years) and examined the interactions between age and brain dynamics among three neurocognitive networks (midcingulo-insular network, M-CIN; medial frontoparietal network, M-FPN; and lateral frontoparietal network, L-FPN) in relation to behavioral measures of cognitive flexibility. Hierarchical multiple regression analysis revealed brain dynamics among a brain state characterized by co-activation of the L-FPN and M-FPN, and brain state transitions, moderated the relationship between quadratic effects of age and cognitive flexibility as measured by scores on the Delis-Kaplan Executive Function System (D-KEFS) test. Furthermore, simple slope analyses of significant interactions revealed children and older adults were more likely to exhibit brain dynamic patterns associated with poorer cognitive flexibility compared with younger adults. Our findings link changes in cognitive flexibility observed with age with the underlying brain dynamics supporting these changes. Preventative and intervention measures should prioritize targeting these networks with cognitive flexibility training to promote optimal outcomes across the lifespan
    corecore