716 research outputs found
Gravitational Collapse in One Dimension
We simulate the evolution of one-dimensional gravitating collisionless
systems from non- equilibrium initial conditions, similar to the conditions
that lead to the formation of dark- matter halos in three dimensions. As in the
case of 3D halo formation we find that initially cold, nearly homogeneous
particle distributions collapse to approach a final equilibrium state with a
universal density profile. At small radii, this attractor exhibits a power-law
behavior in density, {\rho}(x) \propto |x|^(-{\gamma}_crit), {\gamma}_crit
\simeq 0.47, slightly but significantly shallower than the value {\gamma} = 1/2
suggested previously. This state develops from the initial conditions through a
process of phase mixing and violent relaxation. This process preserves the
energy ranks of particles. By warming the initial conditions, we illustrate a
cross-over from this power-law final state to a final state containing a
homogeneous core. We further show that inhomogeneous but cold power-law initial
conditions, with initial exponent {\gamma}_i > {\gamma}_crit, do not evolve
toward the attractor but reach a final state that retains their original
power-law behavior in the interior of the profile, indicating a bifurcation in
the final state as a function of the initial exponent. Our results rely on a
high-fidelity event-driven simulation technique.Comment: 14 Pages, 13 Figures. Submitted to MNRA
Deprojection of Rich Cluster Images
We consider a general method of deprojecting 2D images to reconstruct the 3D
structure of the projected object, assuming axial symmetry. The method consists
of the application of the Fourier Slice Theorem to the general case where the
axis of symmetry is not necessarily perpendicular to the line of sight, and is
based on an extrapolation of the image Fourier transform into the so-called
cone of ignorance. The method is specifically designed for the deprojection of
X-ray, Sunyaev-Zeldovich (SZ) and gravitational lensing maps of rich clusters
of galaxies. For known values of the Hubble constant, H0, and inclination
angle, the quality of the projection depends on how exact is the extrapolation
in the cone of ignorance. In the case where the axis of symmetry is
perpendicular to the line of sight and the image is noise-free, the
deprojection is exact. Given an assumed value of H0, the inclination angle can
be found by matching the deprojected structure out of two different images of a
given cluster, e.g., SZ and X-ray maps. However, this solution is degenerate
with respect to its dependence on the assumed H0, and a third independent image
of the given cluster is needed to determine H0 as well. The application of the
deprojection algorithm to upcoming SZ, X-ray and weak lensing projected mass
images of clusters will serve to determine the structure of rich clusters, the
value of H0, and place constraints on the physics of the intra-cluster gas and
its relation to the total mass distribution.Comment: 7 pages, LaTeX, 2 Postscript figures, uses as2pp4.sty. Accepted for
publication in ApJ Letters. Also available at:
http://astro.berkeley.edu:80/~squires/papers/deproj.ps.g
Dynamics of the Narrow-Line Region in the Seyfert 2 Galaxy NGC 1068
We present dynamical models based on a study of high-resolution long-slit
spectra of the narrow-line region (NLR) in NGC 1068 obtained with the Space
Telescope Imaging Spectrograph (STIS) aboard The Hubble Space Telescope (HST).
The dynamical models consider the radiative force due to the active galactic
nucleus (AGN), gravitational forces from the supermassive black hole (SMBH),
nuclear stellar cluster, and galactic bulge, and a drag force due to the NLR
clouds interacting with a hot ambient medium. The derived velocity profile of
the NLR gas is compared to that obtained from our previous kinematic models of
the NLR using a simple biconical geometry for the outflowing NLR clouds. The
results show that the acceleration profile due to radiative line driving is too
steep to fit the data and that gravitational forces along cannot slow the
clouds down, but with drag forces included, the clouds can slow down to the
systemic velocity over the range 100--400 pc, as observed. However, we are not
able to match the gradual acceleration of the NLR clouds from ~0 to ~100 pc,
indicating the need for additional dynamical studies.Comment: Paper prepared by emulateapj version 10/09/06 and accepted for print
in Ap
Dynamical Cusp Regeneration
After being destroyed by a binary supermassive black hole, a stellar density
cusp can regrow at the center of a galaxy via energy exchange between stars
moving in the gravitational field of the single, coalesced hole. We illustrate
this process via high-accuracy N-body simulations. Regeneration requires
roughly one relaxation time and the new cusp extends to a distance of roughly
one-fifth the black hole's influence radius, with density rho ~ r^{-7/4}; the
mass in the cusp is of order 10% the mass of the black hole. Growth of the cusp
is preceded by a stage in which the stellar velocity dispersion evolves toward
isotropy and away from the tangentially-anisotropic state induced by the
binary. We show that density profiles similar to those observed at the center
of the Milky Way and M32 can regenerate themselves in several Gyr following
infall of a second black hole; the presence of density cusps at the centers of
these galaxies can therefore not be used to infer that no merger has occurred.
We argue that Bahcall-Wolf cusps are ubiquitous in stellar spheroids fainter
than M_V ~ -18.5 that contain supermassive black holes, but the cusps have not
been detected outside of the Local Group since their angular sizes are less
than 0.1". We show that the presence of a cusp implies a lower limit of
\~10^{-4} per year on the rate of stellar tidal disruptions, and discuss the
consequences of the cusps for gravitational lensing and the distribution of
dark matter on sub-parsec scales.Comment: Accepted for publication in The Astrophysical Journa
Open questions on bonding involving lanthanide atoms
In-depth understanding of the bonding characteristics of the lanthanide ions in contemporary lanthanide-based materials is mandatory for tailoring their properties for novel applications. Here, the authors elaborate on open questions regarding the bonding situation in mainly molecular lanthanide (4f) compounds, where, as compared to their actinide (5f) analogs in which covalency of the bonds is a common feature, this is still under discussion for the 4f compounds
A simple analytical model for dark matter halo structure and adiabatic contraction
A simple analytical model for describing inner parts of dark matter halo is
considered. It is assumed that dark matter density is power-law. The model
deals with dark matter distribution function in phase space of adiabatic
invariants (radial action and angular momentum). Two variants are considered
for the angular part of the distribution function: narrow and broad
distribution. The model allows to describe explicitly the process of adiabatic
contraction of halo due to change of gravitational potential caused by
condensation of baryonic matter in the centre. The modification of dark matter
density in the centre is calculated, and is it shown that the standard
algorithm of adiabatic contraction calculation overestimates the compressed
halo density, especially in the case of strong radial anisotropy.Comment: 5 pages, 3 figures. v3 - major improvements, another halo model
introduced, discussion extende
- âŠ