716 research outputs found

    Gravitational Collapse in One Dimension

    Full text link
    We simulate the evolution of one-dimensional gravitating collisionless systems from non- equilibrium initial conditions, similar to the conditions that lead to the formation of dark- matter halos in three dimensions. As in the case of 3D halo formation we find that initially cold, nearly homogeneous particle distributions collapse to approach a final equilibrium state with a universal density profile. At small radii, this attractor exhibits a power-law behavior in density, {\rho}(x) \propto |x|^(-{\gamma}_crit), {\gamma}_crit \simeq 0.47, slightly but significantly shallower than the value {\gamma} = 1/2 suggested previously. This state develops from the initial conditions through a process of phase mixing and violent relaxation. This process preserves the energy ranks of particles. By warming the initial conditions, we illustrate a cross-over from this power-law final state to a final state containing a homogeneous core. We further show that inhomogeneous but cold power-law initial conditions, with initial exponent {\gamma}_i > {\gamma}_crit, do not evolve toward the attractor but reach a final state that retains their original power-law behavior in the interior of the profile, indicating a bifurcation in the final state as a function of the initial exponent. Our results rely on a high-fidelity event-driven simulation technique.Comment: 14 Pages, 13 Figures. Submitted to MNRA

    Deprojection of Rich Cluster Images

    Get PDF
    We consider a general method of deprojecting 2D images to reconstruct the 3D structure of the projected object, assuming axial symmetry. The method consists of the application of the Fourier Slice Theorem to the general case where the axis of symmetry is not necessarily perpendicular to the line of sight, and is based on an extrapolation of the image Fourier transform into the so-called cone of ignorance. The method is specifically designed for the deprojection of X-ray, Sunyaev-Zeldovich (SZ) and gravitational lensing maps of rich clusters of galaxies. For known values of the Hubble constant, H0, and inclination angle, the quality of the projection depends on how exact is the extrapolation in the cone of ignorance. In the case where the axis of symmetry is perpendicular to the line of sight and the image is noise-free, the deprojection is exact. Given an assumed value of H0, the inclination angle can be found by matching the deprojected structure out of two different images of a given cluster, e.g., SZ and X-ray maps. However, this solution is degenerate with respect to its dependence on the assumed H0, and a third independent image of the given cluster is needed to determine H0 as well. The application of the deprojection algorithm to upcoming SZ, X-ray and weak lensing projected mass images of clusters will serve to determine the structure of rich clusters, the value of H0, and place constraints on the physics of the intra-cluster gas and its relation to the total mass distribution.Comment: 7 pages, LaTeX, 2 Postscript figures, uses as2pp4.sty. Accepted for publication in ApJ Letters. Also available at: http://astro.berkeley.edu:80/~squires/papers/deproj.ps.g

    Dynamics of the Narrow-Line Region in the Seyfert 2 Galaxy NGC 1068

    Get PDF
    We present dynamical models based on a study of high-resolution long-slit spectra of the narrow-line region (NLR) in NGC 1068 obtained with the Space Telescope Imaging Spectrograph (STIS) aboard The Hubble Space Telescope (HST). The dynamical models consider the radiative force due to the active galactic nucleus (AGN), gravitational forces from the supermassive black hole (SMBH), nuclear stellar cluster, and galactic bulge, and a drag force due to the NLR clouds interacting with a hot ambient medium. The derived velocity profile of the NLR gas is compared to that obtained from our previous kinematic models of the NLR using a simple biconical geometry for the outflowing NLR clouds. The results show that the acceleration profile due to radiative line driving is too steep to fit the data and that gravitational forces along cannot slow the clouds down, but with drag forces included, the clouds can slow down to the systemic velocity over the range 100--400 pc, as observed. However, we are not able to match the gradual acceleration of the NLR clouds from ~0 to ~100 pc, indicating the need for additional dynamical studies.Comment: Paper prepared by emulateapj version 10/09/06 and accepted for print in Ap

    Dynamical Cusp Regeneration

    Get PDF
    After being destroyed by a binary supermassive black hole, a stellar density cusp can regrow at the center of a galaxy via energy exchange between stars moving in the gravitational field of the single, coalesced hole. We illustrate this process via high-accuracy N-body simulations. Regeneration requires roughly one relaxation time and the new cusp extends to a distance of roughly one-fifth the black hole's influence radius, with density rho ~ r^{-7/4}; the mass in the cusp is of order 10% the mass of the black hole. Growth of the cusp is preceded by a stage in which the stellar velocity dispersion evolves toward isotropy and away from the tangentially-anisotropic state induced by the binary. We show that density profiles similar to those observed at the center of the Milky Way and M32 can regenerate themselves in several Gyr following infall of a second black hole; the presence of density cusps at the centers of these galaxies can therefore not be used to infer that no merger has occurred. We argue that Bahcall-Wolf cusps are ubiquitous in stellar spheroids fainter than M_V ~ -18.5 that contain supermassive black holes, but the cusps have not been detected outside of the Local Group since their angular sizes are less than 0.1". We show that the presence of a cusp implies a lower limit of \~10^{-4} per year on the rate of stellar tidal disruptions, and discuss the consequences of the cusps for gravitational lensing and the distribution of dark matter on sub-parsec scales.Comment: Accepted for publication in The Astrophysical Journa

    Open questions on bonding involving lanthanide atoms

    Get PDF
    In-depth understanding of the bonding characteristics of the lanthanide ions in contemporary lanthanide-based materials is mandatory for tailoring their properties for novel applications. Here, the authors elaborate on open questions regarding the bonding situation in mainly molecular lanthanide (4f) compounds, where, as compared to their actinide (5f) analogs in which covalency of the bonds is a common feature, this is still under discussion for the 4f compounds

    A simple analytical model for dark matter halo structure and adiabatic contraction

    Full text link
    A simple analytical model for describing inner parts of dark matter halo is considered. It is assumed that dark matter density is power-law. The model deals with dark matter distribution function in phase space of adiabatic invariants (radial action and angular momentum). Two variants are considered for the angular part of the distribution function: narrow and broad distribution. The model allows to describe explicitly the process of adiabatic contraction of halo due to change of gravitational potential caused by condensation of baryonic matter in the centre. The modification of dark matter density in the centre is calculated, and is it shown that the standard algorithm of adiabatic contraction calculation overestimates the compressed halo density, especially in the case of strong radial anisotropy.Comment: 5 pages, 3 figures. v3 - major improvements, another halo model introduced, discussion extende
    • 

    corecore