6 research outputs found

    The Potential of Epigallocatechin-3-gallate (EGCG) as Complementary Medicine for the Treatment of Inflammatory Bowel Disease

    Get PDF
    Complementary and alternative medicine has the potential to enrich conventional therapy to improve the treatment of various diseases. Patients that suffer from inflammatory bowel disease, which requires a constant need for medication, have to deal with the adverse effects of repeated application. Natural products such as Epigallocatechin-3-gallate (EGCG) possess the potential to improve symptoms of inflammatory diseases. We investigated the efficacy of EGCG on an inflamed co-culture model simulating IBD and compared it to the efficacies of four commonly applied active pharmaceutical ingredients. EGCG (200 ”g/mL) strongly stabilized the TEER value of the inflamed epithelial barrier to 165.7 ± 4.6% after 4 h. Moreover, the full barrier integrity was maintained even after 48 h. This corresponds to the immunosuppressant 6-Mercaptopurin and the biological drug Infliximab. The EGCG treatment significantly decreased the release of the pro-inflammatory cytokines IL-6 (to 0%) and IL-8 (to 14.2%), similar to the effect of the corticosteroid Prednisolone. Therefore, EGCG has a high potential to be deployed as complementary medicine in IBD. In future studies, the improvement of EGCG stability is a key factor in increasing the bioavailability in vivo and fully harnessing the health-improving effects of EGCG

    Organ-on-a-chip: Determine feasibility of a human liver microphysiological model to assess long-term steroid metabolites in sports drug testing

    No full text
    A fundamental challenge in preventive doping research is the study of metabolic pathways of substances banned in sport. However, the pharmacological predictions obtained by conventional in vitro or in vivo animal studies are occasionally of limited transferability to humans according to an inability of in vitro models to mimic higher order system physiology or due to various species-specific differences using animal models. A more recently established technology for simulating human physiology is the organ-on-a-chip principle. In a multichannel microfluidic cell culture chip, 3-dimensional tissue spheroids, which can constitute artificial and interconnected microscale organs, imitate principles of the human physiology. The objective of this study was to determine if the technology is suitable to adequately predict metabolic profiles of prohibited substances in sport. As model compounds, the frequently misused anabolic steroids, stanozolol and dehydrochloromethyltestosterone (DHCMT) were subjected to human liver spheroids in microfluidic cell culture chips. The metabolite patterns produced and circulating in the chip media were then assessed by LC-HRMS/(MS) at different time points of up to 14 days of incubation at 37 degrees C. The overall profile of observed glucurono-conjugated stanozolol metabolites excellently matched the commonly found urinary pattern of metabolites, including 3 ' OH-stanozolol-glucuronide and stanozolol-N-glucuronides. Similarly, but to a lower extent, the DHCMT metabolic profile was in agreement with phase-I and phase-II biotransformation products regularly seen in postadministration urine specimens. In conclusion, this pilot study indicates that the organ-on-a-chip technology provides a high degree of conformity with traditional human oral administration studies, providing a promising approach for metabolic profiling in sports drug testing

    Macrophage HIF‐2α regulates tumor‐suppressive Spint1 in the tumor microenvironment

    No full text
    In solid tumors, tumor‐associated macrophages (TAMs) commonly accumulate within hypoxic areas. Adaptations to such environments evoke transcriptional changes by the hypoxia‐inducible factors (HIFs). While HIF‐1α is ubiquitously expressed, HIF‐2α appears tissue‐specific with consequences of HIF‐2α expression in TAMs only being poorly characterized. An E0771 allograft breast tumor model revealed faster tumor growth in myeloid HIF‐2α knockout (HIF‐2αLysM−/−) compared with wildtype (wt) mice. In an RNA‐sequencing approach of FACS sorted wt and HIF‐2α LysM−/− TAMs, serine protease inhibitor, Kunitz type‐1 ( Spint1) emerged as a promising candidate for HIF‐2α‐dependent regulation. We validated reduced Spint1 messenger RNA expression and concomitant Spint1 protein secretion under hypoxia in HIF‐2α‐deficient bone marrow–derived macrophages (BMDMs) compared with wt BMDMs. In line with the physiological function of Spint1 as an inhibitor of hepatocyte growth factor (HGF) activation, supernatants of hypoxic HIF‐2α knockout BMDMs, not containing Spint1, were able to release proliferative properties of inactive pro‐HGF on breast tumor cells. In contrast, hypoxic wt BMDM supernatants containing abundant Spint1 amounts failed to do so. We propose that Spint1 contributes to the tumor‐suppressive function of HIF‐2α in TAMs in breast tumor development

    Macrophage HIF‐2α regulates tumor‐suppressive Spint1 in the tumor microenvironment

    No full text
    In solid tumors, tumor‐associated macrophages (TAMs) commonly accumulate within hypoxic areas. Adaptations to such environments evoke transcriptional changes by the hypoxia‐inducible factors (HIFs). While HIF‐1α is ubiquitously expressed, HIF‐2α appears tissue‐specific with consequences of HIF‐2α expression in TAMs only being poorly characterized. An E0771 allograft breast tumor model revealed faster tumor growth in myeloid HIF‐2α knockout (HIF‐2αLysM−/−) compared with wildtype (wt) mice. In an RNA‐sequencing approach of FACS sorted wt and HIF‐2α LysM−/− TAMs, serine protease inhibitor, Kunitz type‐1 ( Spint1) emerged as a promising candidate for HIF‐2α‐dependent regulation. We validated reduced Spint1 messenger RNA expression and concomitant Spint1 protein secretion under hypoxia in HIF‐2α‐deficient bone marrow–derived macrophages (BMDMs) compared with wt BMDMs. In line with the physiological function of Spint1 as an inhibitor of hepatocyte growth factor (HGF) activation, supernatants of hypoxic HIF‐2α knockout BMDMs, not containing Spint1, were able to release proliferative properties of inactive pro‐HGF on breast tumor cells. In contrast, hypoxic wt BMDM supernatants containing abundant Spint1 amounts failed to do so. We propose that Spint1 contributes to the tumor‐suppressive function of HIF‐2α in TAMs in breast tumor development

    A complete workflow for the differentiation and the dissociation of hiPSC-derived cardiospheres

    No full text
    Cardiomyocytes derived from human induced pluripotent stem cells (hiPSC-CMs) are an invaluable tool for both basic and translational cardiovascular research. The potential that these cells hold for therapy, disease modeling and drug discovery is hampered by several bottlenecks that currently limit both the yield and the efficiency of cardiac induction. Here, we present a complete workflow for the production of ready-to-use hiPSC-CMs in a dynamic suspension bioreactor. This includes the efficient and highly reproducible differentiation of hiPSCs into cardiospheres, which display enhanced physiological maturation compared to static 3D induction in hanging drops, and a novel papain-based dissociation method that offers higher yield and viability than the broadly used dissociation reagents TrypLE and Accutase. Molecular and functional analyses of the cardiomyocytes reseeded after dissociation confirmed both the identity and the functionality of the cells, which can be used in downstream applications, either as monolayers or spheroids. Keywords: hiPSCs, Cardiomyocytes, Cardiac induction, 3D bioreactor, Papain dissociatio

    An Individual Patient's “Body” on Chips—How Organismoid Theory Can Translate Into Your Personal Precision Therapy Approach

    No full text
    The first concepts for reproducing human systemic organismal biology in vitro were developed over 12 years ago. Such concepts, then called human- or body-on-a-chip, claimed that microphysiological systems would become the relevant technology platform emulating the physiology and morphology of human organisms at the smallest biologically acceptable scale in vitro and, therefore, would enable the selection of personalized therapies for any patient at unprecedented precision. Meanwhile, the first human organoids—stem cell-derived complex three-dimensional organ models that expand and self-organize in vitro—have proven that in vitro self-assembly of minute premature human organ-like structures is feasible, once the respective stimuli of ontogenesis are provided to human stem cells. Such premature organoids can precisely reflect a number of distinct physiological and pathophysiological features of their respective counterparts in the human body. We now develop the human-on-a-chip concepts of the past into an organismoid theory. We describe the current concept and principles to create a series of organismoids—minute, mindless and emotion-free physiological in vitro equivalents of an individual's mature human body—by an artificially short process of morphogenetic self-assembly mimicking an individual's ontogenesis from egg cell to sexually mature organism. Subsequently, we provide the concept and principles to maintain such an individual's set of organismoids at a self-sustained functional healthy homeostasis over very long time frames in vitro. Principles how to perturb a subset of healthy organismoids by means of the natural or artificial induction of diseases are enrolled to emulate an individual's disease process. Finally, we discuss using such series of healthy and perturbed organismoids in predictively selecting, scheduling and dosing an individual patient's personalized therapy or medicine precisely. The potential impact of the organismoid theory on our healthcare system generally and the rapid adoption of disruptive personalized T-cell therapies particularly is highlighted.EC/H2020/820292/EU/RESTORE Health by Advanced Therapies (Advanced Therapy Medicinal Products and Biologized Medical Devices) – ALL for Advanced Therapies – with Passion – For Patients/RESTOR
    corecore