274 research outputs found
Gauss-Bonnet Black Holes and Heavy Fermion Metals
We consider charged black holes in Einstein-Gauss-Bonnet Gravity with
Lifshitz boundary conditions. We find that this class of models can reproduce
the anomalous specific heat of condensed matter systems exhibiting
non-Fermi-liquid behaviour at low temperatures. We find that the temperature
dependence of the Sommerfeld ratio is sensitive to the choice of Gauss-Bonnet
coupling parameter for a given value of the Lifshitz scaling parameter. We
propose that this class of models is dual to a class of models of
non-Fermi-liquid systems proposed by Castro-Neto et.al.Comment: 17 pages, 6 figures, pdfLatex; small corrections to figure 10 in this
versio
Lovelock-Lifshitz Black Holes
In this paper, we investigate the existence of Lifshitz solutions in Lovelock
gravity, both in vacuum and in the presence of a massive vector field. We show
that the Lovelock terms can support the Lifshitz solution provided the
constants of the theory are suitably chosen. We obtain an exact black hole
solution with Lifshitz asymptotics of any scaling parameter in both
Gauss-Bonnet and in pure 3rd order Lovelock gravity. If matter is added in the
form of a massive vector field, we also show that Lifshitz solutions in
Lovelock gravity exist; these can be regarded as corrections to Einstein
gravity coupled to this form of matter. For this form of matter we numerically
obtain a broad range of charged black hole solutions with Lifshitz asymptotics,
for either sign of the cosmological constant. We find that these asymptotic
Lifshitz solutions are more sensitive to corrections induced by Lovelock
gravity than are their asymptotic AdS counterparts. We also consider the
thermodynamics of the black hole solutions and show that the temperature of
large black holes with curved horizons is proportional to where is
the critical exponent; this relationship holds for black branes of any size. As
is the case for asymptotic AdS black holes, we find that an extreme black hole
exists only for the case of horizons with negative curvature. We also find that
these Lovelock-Lifshitz black holes have no unstable phase, in contrast to the
Lovelock-AdS case. We also present a class of rotating Lovelock-Lifshitz black
holes with Ricci-flat horizons.Comment: 26 pages, 10 figures, a few references added, typo fixed and some
comments have been adde
Holographic superfluids as duals of rotating black strings
We study the breaking of an Abelian symmetry close to the horizon of an
uncharged rotating Anti-de Sitter black string in 3+1 dimensions. The boundary
theory living on R^2 x S^1 has no rotation, but a magnetic field that is
aligned with the axis of the black string. This boundary theory decribes
non-rotating (2+1)-dimensional holographic superfluids with non-vanishing
superfluid velocity. We study these superfluids in the grand canonical ensemble
and show that for sufficiently small angular momentum of the dual black string
and sufficiently small superfluid velocity the phase transition is 2nd order,
while it becomes 1st order for larger superfluid velocity. Moreover, we observe
that the phase transition is always 1st order above a critical value of the
angular momentum independent of the choice of the superfluid velocity.Comment: 9 pages including 5 figures: v2: 12 pages including 7 figures; 2
figures added, discussion on free energy added; accepted for publication in
JHE
Holographic Lovelock Gravities and Black Holes
We study holographic implications of Lovelock gravities in AdS spacetimes.
For a generic Lovelock gravity in arbitrary spacetime dimensions we formulate
the existence condition for asymptotically AdS black holes. We consider small
fluctuations around these black holes and determine the constraint on Lovelock
parameters by demanding causality of the boundary theory. For the case of cubic
Lovelock gravity in seven spacetime dimensions we compute the holographic Weyl
anomaly and determine the three point functions of the stress energy tensor in
the boundary CFT. Remarkably, these correlators happen to satisfy the same
relation as the one imposed by supersymmetry. We then compute the energy flux;
requiring it to be positive is shown to be completely equivalent to requiring
causality of the finite temperature CFT dual to the black hole. These
constraints are not stringent enough to place any positive lower bound on the
value of viscosity. Finally, we conjecture an expression for the energy flux
valid for any Lovelock theory in arbitrary dimensions.Comment: 31 pages, 1 figure, harvmac, references added, calculation of
viscosity/entropy ratio include
Pathologies in Asymptotically Lifshitz Spacetimes
There has been significant interest in the last several years in studying
possible gravitational duals, known as Lifshitz spacetimes, to anisotropically
scaling field theories by adding matter to distort the asymptotics of an AdS
spacetime. We point out that putative ground state for the most heavily studied
example of such a spacetime, that with a flat spatial section, suffers from a
naked singularity and further point out this singularity is not resolvable by
any known stringy effect. We review the reasons one might worry that
asymptotically Lifshitz spacetimes are unstable and employ the initial data
problem to study the stability of such systems. Rather surprisingly this
question, and even the initial value problem itself, for these spacetimes turns
out to generically not be well-posed. A generic normalizable state will evolve
in such a way to violate Lifshitz asymptotics in finite time. Conversely,
enforcing the desired asymptotics at all times puts strong restrictions not
just on the metric and fields in the asymptotic region but in the deep interior
as well. Generically, even perturbations of the matter field of compact support
are not compatible with the desired asymptotics.Comment: 36 pages, 1 figure, v2: Enhanced discussion of singularity, including
relationship to Gubser's conjecture and singularity in RG flow solution, plus
minor clarification
Thermodynamics of Dyonic Lifshitz Black Holes
Black holes with asymptotic anisotropic scaling are conjectured to be gravity
duals of condensed matter system close to quantum critical points with
non-trivial dynamical exponent z at finite temperature. A holographic
renormalization procedure is presented that allows thermodynamic potentials to
be defined for objects with both electric and magnetic charge in such a way
that standard thermodynamic relations hold. Black holes in asymptotic Lifshitz
spacetimes can exhibit paramagnetic behavior at low temperature limit for
certain values of the critical exponent z, whereas the behavior of AdS black
holes is always diamagnetic.Comment: 26 pages, 4 figure
Black holes and black branes in Lifshitz spacetimes
We construct analytic solutions describing black holes and black branes in
asymptotically Lifshitz spacetimes with arbitrary dynamical exponent z and for
arbitrary number of dimensions. The model considered consists of Einstein
gravity with negative cosmological constant, a scalar, and N U(1) gauge fields
with dilatonic-like couplings. We study the phase diagrams and thermodynamic
instabilities of the solution, and find qualitative differences between the
cases with 12.Comment: 27 pages, 10 figures; v2 references added, minor comments adde
Lifshitz black holes in string theory
We provide the first black hole solutions with Lifshitz asymptotics found in
string theory. These are expected to be dual to models enjoying anisotropic
scale invariance with dynamical exponent z=2 at finite temperature. We employ a
consistent truncation of type IIB supergravity to four dimensions with an
arbitrary 5-dimensional Einstein manifold times a circle as internal geometry.
New interesting features are found that significantly differ from previous
results in phenomenological models. In particular, small black holes are shown
to be thermodynamically unstable, analogously to the usual AdS-Schwarzschild
black holes, and extremality is never reached. This signals a possible
Hawking-Page like phase transition at low temperatures.Comment: 19 pages, 7 figures. v2 references adde
Thermodynamics of a class of non-asymptotically flat black holes in Einstein-Maxwell-Dilaton theory
We analyse in detail the thermodynamics in the canonical and grand canonical
ensembles of a class of non-asymptotically flat black holes of the
Einstein-(anti) Maxwell-(anti) Dilaton theory in 4D with spherical symmetry. We
present the first law of thermodynamics, the thermodynamic analysis of the
system through the geometrothermodynamics methods, Weinhold, Ruppeiner,
Liu-Lu-Luo-Shao and the most common, that made by the specific heat. The
geometric methods show a curvature scalar identically zero, which is
incompatible with the results of the analysis made by the non null specific
heat, which shows that the system is thermodynamically interacting, does not
possess extreme case nor phase transition. We also analyse the local and global
stability of the thermodynamic system, and obtain a local and global stability
for the normal case for 0<\gamma<1 and for other values of \gamma, an unstable
system. The solution where \gamma=0 separates the class of locally and globally
stable solutions from the unstable ones.Comment: 18 pages, version accepted for publication in General Relativity and
Gravitatio
Black Holes in Quasi-topological Gravity
We construct a new gravitational action which includes cubic curvature
interactions and which provides a useful toy model for the holographic study of
a three parameter family of four- and higher-dimensional CFT's. We also
investigate the black hole solutions of this new gravity theory. Further we
examine the equations of motion of quasi-topological gravity. While the full
equations in a general background are fourth-order in derivatives, we show that
the linearized equations describing gravitons propagating in the AdS vacua
match precisely the second-order equations of Einstein gravity.Comment: 33 pages, 4 figures; two references adde
- …