22 research outputs found

    Melatonin: New insights on its therapeutic properties in diabetic complications

    Get PDF
    Diabetes and diabetic complications are considered as leading causes of both morbidity and mortality in the world. Unfortunately, routine medical treatments used for affected patients possess undesirable side effects, including kidney and liver damages as well as gastrointestinal adverse reactions. Therefore, exploring the novel therapeutic strategies for diabetic patients is a crucial issue. It has been recently shown that melatonin, as main product of the pineal gland, despite its various pharmacological features including anticancer, anti-Aging, antioxidant and anti-inflammatory effects, exerts anti-diabetic properties through regulating various cellular mechanisms. The aim of the present review is to describe potential roles of melatonin in the treatment of diabetes and its complications. © 2020 The Author(s)

    Clinical Application of Melatonin in the Treatment of Cardiovascular Diseases: Current Evidence and New Insights into the Cardioprotective and Cardiotherapeutic Properties

    No full text
    Cardiovascular diseases (CVDs) are the leading global cause of mortality and disability, tending to happen in younger individuals in developed countries. Despite improvements in medical treatments, the therapy and long-term prognosis of CVDs such as myocardial ischemia�reperfusion, atherosclerosis, heart failure, cardiac hypertrophy and remodeling, cardiomyopathy, coronary artery disease, myocardial infarction, and other CVDs threatening human life are not satisfactory enough. Therefore, many researchers are attempting to identify novel potential therapeutic methods for the treatment of CVDs. Melatonin is an anti-inflammatory and antioxidant agent with a wide range of therapeutic properties. Recently, several investigations have been carried out to evaluate its effectiveness and efficiency in CVDs therapy, focusing on mechanistic pathways. Herein, this review aims to summarize current findings of melatonin treatment for CVDs. © 2020, Springer Science+Business Media, LLC, part of Springer Nature

    Therapeutic application of nutraceuticals in diabetic nephropathy: Current evidence and future implications

    No full text
    Diabetes mellitus (DM) is a common metabolic disease which may cause several complications, such as diabetic nephropathy (DN). The routine medical treatments used for DM are not effective enough and have many undesirable side effects. Moreover, the global increased prevalence of DM makes researchers try to explore potential complementary or alternative treatments. Nutraceuticals, as natural products with pharmaceutical agents, have a wide range of therapeutic properties in various pathologic conditions such as DN. However, the exact underlying mechanisms have not been fully understood. The purpose of this review is to summarize recent findings on the effect of nutraceuticals on DN. © 2020 John Wiley & Sons Lt

    Melatonin and morphine: potential beneficial effects of co-use

    No full text
    Morphine is a potent analgesic agent used to control acute or chronic pain. Chronic administration of morphine results in analgesic tolerance, hyperalgesia, and other side effects including dependence, addiction, respiratory depression, and constipation, which limit its clinical usage. Therefore, identifying the new analgesics with fewer side effects which could increase the effect of morphine and reduce its side effects is crucial. Melatonin, a multifunctional molecule produced in the body, is known to play an important role in pain regulation. The strong anti-inflammatory effect of melatonin is suggested to be involved in the attenuation of the pain associated with inflammation. Melatonin also increases the anti-nociceptive actions of opioids, such as morphine, and reverses their tolerance through regulating several cellular signaling pathways. In this review, published articles evaluating the effect of the co-consumption of melatonin and morphine in different conditions were investigated. Our results show that melatonin has pain-killing properties when administered alone or in combination with other anti-nociceptive drugs. Melatonin decreases morphine consumption in different pathologies. Furthermore, attenuation of morphine intake can be accompanied by reduction of morphine-associated side-effects, including physical dependence, morphine tolerance, and morphine-related hyperalgesia. Therefore, it is reasonable to believe that the combination of melatonin with morphine could reduce morphine-induced tolerance and hyperalgesia, which may result from anti-inflammatory and antioxidant properties of melatonin. Overall, we underscore that, to further ameliorate patients' life quality and control their pain in various pathological conditions, melatonin deserves to be used with morphine by anesthesiologists in clinical practice. © 2020 Société Française de Pharmacologie et de Thérapeutique

    Melatonin and morphine: potential beneficial effects of co-use

    No full text
    Morphine is a potent analgesic agent used to control acute or chronic pain. Chronic administration of morphine results in analgesic tolerance, hyperalgesia, and other side effects including dependence, addiction, respiratory depression, and constipation, which limit its clinical usage. Therefore, identifying the new analgesics with fewer side effects which could increase the effect of morphine and reduce its side effects is crucial. Melatonin, a multifunctional molecule produced in the body, is known to play an important role in pain regulation. The strong anti-inflammatory effect of melatonin is suggested to be involved in the attenuation of the pain associated with inflammation. Melatonin also increases the anti-nociceptive actions of opioids, such as morphine, and reverses their tolerance through regulating several cellular signaling pathways. In this review, published articles evaluating the effect of the co-consumption of melatonin and morphine in different conditions were investigated. Our results show that melatonin has pain-killing properties when administered alone or in combination with other anti-nociceptive drugs. Melatonin decreases morphine consumption in different pathologies. Furthermore, attenuation of morphine intake can be accompanied by reduction of morphine-associated side-effects, including physical dependence, morphine tolerance, and morphine-related hyperalgesia. Therefore, it is reasonable to believe that the combination of melatonin with morphine could reduce morphine-induced tolerance and hyperalgesia, which may result from anti-inflammatory and antioxidant properties of melatonin. Overall, we underscore that, to further ameliorate patients' life quality and control their pain in various pathological conditions, melatonin deserves to be used with morphine by anesthesiologists in clinical practice. © 2020 Société Française de Pharmacologie et de Thérapeutique

    Diabetic retinopathy pathogenesis and the ameliorating effects of melatonin; involvement of autophagy, inflammation and oxidative stress

    No full text
    Diabetic retinopathy (DR), a microvascular complication of diabetes mellitus (DM), remains as one of the major causes of vision loss worldwide. The release of pro-inflammatory cytokines and the adhesion of leukocytes to retinal capillaries are initial events in DR development. Inflammation, ER stress, oxidative stress and autophagy are major causative factors involved in the pathogenesis of DR. Diabetes associated hyperglycemia leads to mitochondrial electron transport chain dysfunction culminating in a rise in ROS generation. Since mitochondria are the major source of ROS production, oxidative stress induced by mitochondrial dysfunction also contributes to the development of diabetic retinopathy. Autophagy increases in the retina of diabetic patients and is regulated by ER stress, oxidative stress and inflammation-related pathways. Autophagy functions as a double-edged sword in DR. Under mild stress, autophagic activity can lead to cell survival while during severe stress, dysregulated autophagy results in massive cell death and may have a role in initiation and exacerbation of DR. Melatonin and its metabolites play protective roles against inflammation, ER stress and oxidative stress due to their direct free radical scavenger activities and indirect antioxidant activity via the stimulation antioxidant enzymes including glutathione reductase, glutathione peroxidase, superoxide dismutase and catalase. Melatonin also acts as a cell survival agent by modulating autophagy in various cell types and under different conditions through amelioration of oxidative stress, ER stress and inflammation. Herein, we review the possible effects of melatonin on diabetic retinopathy, focusing on its ability to regulate autophagy processes. © 201

    Diabetic retinopathy pathogenesis and the ameliorating effects of melatonin; involvement of autophagy, inflammation and oxidative stress

    No full text
    Diabetic retinopathy (DR), a microvascular complication of diabetes mellitus (DM), remains as one of the major causes of vision loss worldwide. The release of pro-inflammatory cytokines and the adhesion of leukocytes to retinal capillaries are initial events in DR development. Inflammation, ER stress, oxidative stress and autophagy are major causative factors involved in the pathogenesis of DR. Diabetes associated hyperglycemia leads to mitochondrial electron transport chain dysfunction culminating in a rise in ROS generation. Since mitochondria are the major source of ROS production, oxidative stress induced by mitochondrial dysfunction also contributes to the development of diabetic retinopathy. Autophagy increases in the retina of diabetic patients and is regulated by ER stress, oxidative stress and inflammation-related pathways. Autophagy functions as a double-edged sword in DR. Under mild stress, autophagic activity can lead to cell survival while during severe stress, dysregulated autophagy results in massive cell death and may have a role in initiation and exacerbation of DR. Melatonin and its metabolites play protective roles against inflammation, ER stress and oxidative stress due to their direct free radical scavenger activities and indirect antioxidant activity via the stimulation antioxidant enzymes including glutathione reductase, glutathione peroxidase, superoxide dismutase and catalase. Melatonin also acts as a cell survival agent by modulating autophagy in various cell types and under different conditions through amelioration of oxidative stress, ER stress and inflammation. Herein, we review the possible effects of melatonin on diabetic retinopathy, focusing on its ability to regulate autophagy processes. © 201

    Comparative phenotypic characterization of human colostrum and breast milk-derived stem cells

    No full text
    There is a diverse population of stem cells in human breast milk that can be employed for therapeutic purposes as a reservoir of cells. The current study mainly aimed to determine the nature markers expressing on stem cells. For this aim, the expression of embryonic stem cell markers, as well as the expression of endothelial, mesenchymal, neural, and hematopoietic markers were evaluated by the flow cytometry analysis in fresh colostrum, breast milk, and cultured colostrum samples. The results showed that the embryonic (OCT4, SOX2, HLA-DR), hematopoietic (CD33, CD45, CD117), neural (CD133, Nestin), and mesenchymal (CD44, SCA1) stem cell markers present in colostrum had higher expression in comparison with their counterpart markers in fresh breast milk. The expression markers of stem cells in colostrum following a 2-week culture period were significantly increased compared with their counterpart markers in colostrum before the culture process. In the culture of breastmilk, cells were not observed adherent cells and colonies. Our findings form flow cytometry and cell culture suggest that the lactation stage could be one of the factors influencing the stem cell population and, consequently, the cultivation of breastmilk cells. The present study indicates that colostrum is a tremendous source of stem cells that could be applied in cell-based research. © 2020, Japan Human Cell Society and Springer Japan KK, part of Springer Nature
    corecore