16 research outputs found

    Biomimetic Nanoparticles for Targeted Delivery and Removal

    No full text
    Nanoparticle drug delivery has revolutionized the way we think of disease treatment over the last decade. The encapsulation of drugs into nanoparticles has led to better bioavailability, longer circulation times and an extended therapeutic window, and fewer off target effects than free drug administration. Nanoparticles are able to be tailored to specific applications through their size, shape, and surface design. Nanoparticles are just beginning to see clinical translation and FDA approval. Recently, significant efforts have been put into creating biomimetic targeting, particularly utilizing cell membrane coatings. Cell membrane can be used as a biomaterial to “cloak” nanoparticles, endowing them with the surface properties of the parent cell. Each different cell type in the body has a distinct surface structure with lipids, proteins, and receptors perfectly tailored to its purpose and location. Some of these proteins, such as CD47 or the selectins, have well known purposes like immune evasion or specific receptor targeting respectively. Additionally, there are yetundescribed and uncharacterized surface moieties on cells whose properties can be retained by using the entire cell membrane as a biomaterial. By cloaking nanoparticles in cell membrane, they retain many of the properties of the original cell type. We show that this allows for new biointerfacing abilities and a highly specific drug delivery vehicle. This new technology also promises future clinical translation,as the materials are inherently biocompatible. Herein, we will discuss engineered nanoparticle platforms that utilize this biomimetic cell membrane coating technology to improve the delivery of drugs, and additionally the detoxification and removal of pathogens. The biomimetic techniques developed during this PhD range from novel formulations of classical small molecule targeting for cancer therapy, to new methods of utilizing a fusion of natural cell membranes to create custom tailored targeting. These improvements to the field of targeted drug delivery will hopefully lead to better use of drugs and treatment of disease, and a higher level of tailoring ability available to engineers designing future platforms

    Erythrocyte membrane-cloaked polymeric nanoparticles for controlled drug loading and release.

    No full text
    AimPolymeric nanoparticles (NPs) cloaked by red blood cell membrane (RBCm) confer the combined advantage of both long circulation lifetime and controlled drug release. The authors carried out studies to gain a better understanding of the drug loading, drug-release kinetics and cell-based efficacy of RBCm-cloaked NPs.Materials & methodsTwo strategies for loading doxorubicin into the RBCm-cloaked NPs were compared: physical encapsulation and chemical conjugation. In vitro efficacy was examined using the acute myeloid leukemia cell line, Kasumi-1.ResultsIt was found that the chemical conjugation strategy resulted in a more sustained drug release profile, and that the RBCm cloak provided a barrier, retarding the outward diffusion of encapsulated drug molecules. It was also demonstrated that RBCm-cloaked NPs exhibit higher toxicity in comparison with free doxorubicin.ConclusionThese results indicate that the RBCm-cloaked NPs hold great promise to become a valuable drug-delivery platform for the treatment of various diseases such as blood cancers

    CD4+ T cell-mimicking nanoparticles encapsulating DIABLO/SMAC mimetics broadly neutralize HIV-1 and selectively kill HIV-1-infected cells.

    No full text
    HIV-1 is a major global health challenge. The development of an effective vaccine and a therapeutic cure are top priorities. The creation of vaccines that focus an antibody response toward a particular epitope of a protein has shown promise, but the genetic diversity of HIV-1 stymies this progress. Therapeutic strategies that provide effective and broad-spectrum neutralization against HIV-1 infection are highly desirable. Methods: We investigated the potential of nanoengineered CD4+ T cell membrane-coated nanoparticles (TNP) encapsulating the DIABLO/SMAC mimetics LCL-161 or AT-406 (also known as SM-406 or Debio 1143) to both neutralize HIV-1 and selectively kill HIV-1-infected resting CD4+ T cells and macrophages. Results: DIABLO/SMAC mimetic-loaded TNP displayed outstanding neutralizing breadth and potency, and selectively kill HIV-1-infected cells via autophagy-dependent apoptosis while having no drug-induced off-target or cytotoxic effects on bystander cells. Genetic inhibition of early stages of autophagy abolishes this effect. Conclusion: DIABLO/SMAC mimetic loaded TNP have the potential to be used as therapeutic agents to neutralize cell-free HIV-1 and to kill specifically HIV-1-infected cells as part of an HIV-1 cure strategy
    corecore