17 research outputs found

    Identification of Sequence Variants in Genetic Disease-Causing Genes Using Targeted Next-Generation Sequencing

    Get PDF
    Identification of gene variants plays an important role in research on and diagnosis of genetic diseases. A combination of enrichment of targeted genes and next-generation sequencing (targeted DNA-HiSeq) results in both high efficiency and low cost for targeted sequencing of genes of interest.To identify mutations associated with genetic diseases, we designed an array-based gene chip to capture all of the exons of 193 genes involved in 103 genetic diseases. To evaluate this technology, we selected 7 samples from seven patients with six different genetic diseases resulting from six disease-causing genes and 100 samples from normal human adults as controls. The data obtained showed that on average, 99.14% of 3,382 exons with more than 30-fold coverage were successfully detected using Targeted DNA-HiSeq technology, and we found six known variants in four disease-causing genes and two novel mutations in two other disease-causing genes (the STS gene for XLI and the FBN1 gene for MFS) as well as one exon deletion mutation in the DMD gene. These results were confirmed in their entirety using either the Sanger sequencing method or real-time PCR.Targeted DNA-HiSeq combines next-generation sequencing with the capture of sequences from a relevant subset of high-interest genes. This method was tested by capturing sequences from a DNA library through hybridization to oligonucleotide probes specific for genetic disorder-related genes and was found to show high selectivity, improve the detection of mutations, enabling the discovery of novel variants, and provide additional indel data. Thus, targeted DNA-HiSeq can be used to analyze the gene variant profiles of monogenic diseases with high sensitivity, fidelity, throughput and speed

    Hormone therapy in Brazilian postmenopausal women with chronic hepatitis C: a pilot study

    No full text
    Design Fifty out of 336 postmenopausal patients with chronic infection with the hepatitis C virus were selected. The non-inclusion criteria were other chronic or systemic liver diseases, severe vascular diseases, autoimmune diseases or malignant tumors. The patients were randomized into two groups: the HT group with 25 patients to be given transdermal hormone therapy (50 mu g estradiol plus 170 mu g norethisterone/day) and the control group with the other 25 patients (no medication). Hepatic tests (alanine aminotransferase, aspartate aminotransferase, gamma glutamyltransferase, total alkaline phosphatase, albumin, serum bilirubin) and hemostatic parameters (prothrombin time, factor V, fibrinogen) were evaluated at baseline and at 1, 4, 7 and 9 months of treatment. Results No significant changes in parameters were found in the comparison between the treated group and the controls, except for a decrease in total alkaline phosphatase (p = 0.002), presumably due to changes in bone remodelling. Conclusions There were no changes in liver function after a 9-month treatment with transdermal estradiol plus norethisterone in symptomatic postmenopausal patients with hepatitis C

    Lack of evidence for the pathogenic role of iron and HFE gene mutations in Brazilian patients with nonalcoholic steatohepatitis

    No full text
    The hypothesis of the role of iron overload associated with HFE gene mutations in the pathogenesis of nonalcoholic steatohepatitis (NASH) has been raised in recent years. In the present study, biochemical and histopathological evidence of iron overload and HFE mutations was investigated in NASH patients. Thirty-two NASH patients, 19 females (59%), average 49.2 years, 72% Caucasians, 12% Mulattoes and 12% Asians, were submitted to serum aminotransferase and iron profile determinations. Liver biopsies were analyzed for necroinflammatory activity, architectural damage and iron deposition. In 31 of the patients, C282Y and H63D mutations were tested by PCR-RFLP. Alanine aminotransferase levels were increased in 30 patients, 2.42 ± 1.12 times the upper normal limit on average. Serum iron concentration, transferrin saturation and ferritin averages were 99.4 ± 31.3 g/dl, 33.1 ± 12.7% and 219.8 ± 163.8 ”g/dl, respectively, corresponding to normal values in 93.5, 68.7 and 78.1% of the patients. Hepatic siderosis was observed in three patients and was not associated with architectural damage (P = 0.53) or with necroinflammatory activity (P = 0.27). The allelic frequencies (N = 31) found were 1.6 and 14.1% for C282Y and H63D, respectively, which were compatible with those described for the local population. In conclusion, no evidence of an association of hepatic iron overload and HFE mutations with NASH was found. Brazilian NASH patients comprise a heterogeneous group with many associated conditions such as hyperinsulinism, environmental hepatotoxin exposure and drugs, but not hepatic iron overload, and their disease susceptibility could be related to genetic and environmental features other than HFE mutations
    corecore