340 research outputs found

    The Hot End of Evolutionary Horizontal Branches

    Full text link
    In this paper we investigate the hot end of the HB, presenting evolutionary constraints concerning the CM diagram location and the gravity of hot HB stars. According to the adopted evolutionary scenario, we predict an upper limit for HB temperatures of about logTe = 4.45, remarkably cooler than previous estimates. We find that such a theoretical prescription appears in good agreement with available observational data concerning both stellar temperatures and gravities.Comment: postscript file of 10 pages plus 1 tables,rep.1 5 figures will be added later as postscript file The tex file and the other two not postscript figures are available upon request at [email protected], rep.

    Theoretical formulation of Doppler redistribution in scattering polarization within the framework of the velocity-space density matrix formalism

    Full text link
    Within the framework of the density matrix theory for the generation and transfer of polarized radiation, velocity density matrix correlations represent an important physical aspect that, however, is often neglected in practical applications by adopting the simplifying approximation of complete redistribution on velocity. In this paper, we present an application of the Non-LTE problem for polarized radiation taking such correlations into account through the velocity-space density matrix formalism. We consider a two-level atom with infinitely sharp upper and lower levels, and we derive the corresponding statistical equilibrium equations neglecting the contribution of velocity-changing collisions. Coupling such equations with the radiative transfer equations for polarized radiation, we derive a set of coupled equations for the velocity-dependent source function. This set of equations is then particularized to the case of a plane-parallel atmosphere. The equations presented in this paper provide a complete and solid description of the physics of pure Doppler redistribution, a phenomenon generally described within the framework of the redistribution matrix formalism. The redistribution matrix corresponding to this problem (generally referred to as R_I) is derived starting from the statistical equilibrium equations for the velocity-space density matrix and from the radiative transfer equations for polarized radiation, thus showing the equivalence of the two approaches.Comment: Accepted for publication in Astronomy & Astrophysic

    Isotropic inelastic and superelastic collisional rates in a multiterm atom

    Full text link
    The spectral line polarization of the radiation emerging from a magnetized astrophysical plasma depends on the state of the atoms within the medium, whose determination requires considering the interactions between the atoms and the magnetic field, between the atoms and photons (radiative transitions), and between the atoms and other material particles (collisional transitions). In applications within the framework of the multiterm model atom (which accounts for quantum interference between magnetic sublevels pertaining either to the same J-level or to different J-levels within the same term) collisional processes are generally neglected when solving the master equation for the atomic density matrix. This is partly due to the lack of experimental data and/or of approximate theoretical expressions for calculating the collisional transfer and relaxation rates (in particular the rates for interference between sublevels pertaining to different J-levels, and the depolarizing rates due to elastic collisions). In this paper we formally define and investigate the transfer and relaxation rates due to isotropic inelastic and superelastic collisions that enter the statistical equilibrium equations of a multiterm atom. Under the hypothesis that the atom-collider interaction can be described by a dipolar operator, we provide expressions that relate the collisional rates for interference between different J-levels to the usual collisional rates for J-level populations. Finally, we apply the general equations to the case of a two-term atom with unpolarized lower term, illustrating the impact of inelastic and superelastic collisions on scattering polarization through radiative transfer calculations in a slab of stellar atmospheric plasma anisotropically illuminated by the photospheric radiation field.Comment: Accepted for publication in Astronomy & Astrophysic

    Astrophysical implications of the proton-proton cross section updates

    Get PDF
    The p(p,e^+ \nu_e)^2H reaction rate is an essential ingredient for theoretical computations of stellar models. In the past several values of the corresponding S-factor have been made available by different authors. Prompted by a recent evaluation of S(E), we analysed the effect of the adoption of different proton-proton reaction rates on stellar models, focusing, in particular, on the age of mid and old stellar clusters (1-12 Gyr) and on standard solar model predictions. By comparing different widely adopted p(p,e^+ \nu_e)^2H reaction rates, we found a maximum difference in the temperature regimes typical of main sequence hydrogen-burning stars (5x10^6 - 3x10^7 K) of about 3%. Such a variation translates into a change of cluster age determination lower than 1%. A slightly larger effect is observed in the predicted solar neutrino fluxes with a maximum difference, in the worst case, of about 8%. Finally we also notice that the uncertainty evaluation of the present proton-proton rate is at the level of few \permil, thus the p(p,e^+ \nu_e)^2H reaction rate does not constitute anymore a significant uncertainty source in stellar models.Comment: accepte

    The Hanle and Zeeman Effects in Solar Spicules: A Novel Diagnostic Window on Chromospheric Magnetism

    Full text link
    An attractive diagnostic tool for investigating the magnetism of the solar chromosphere is the observation and theoretical modeling of the Hanle and Zeeman effects in spicules, as shown in this letter for the first time. Here we report on spectropolarimetric observations of solar chromospheric spicules in the He I 10830 \AA multiplet and on their theoretical modeling accounting for radiative transfer effects. We find that the magnetic field in the observed (quiet Sun) spicular material at a height of about 2000 km above the visible solar surface has a strength of the order of 10 G and is inclined by approximately 35∘35^{\circ} with respect to the local vertical direction. Our empirical finding based on full Stokes-vector spectropolarimetry should be taken into account in future magnetohydrodynamical simulations of spicules.Comment: 12 pages and 2 figure

    On the physical origin of the second solar spectrum of the Sc II line at 4247 A

    Full text link
    The peculiar three-peak structure of the linear polarization profile shown in the second solar spectrum by the Ba II line at 4554 A has been interpreted as the result of the different contributions coming from the barium isotopes with and without hyperfine structure (HFS). In the same spectrum, a triple peak polarization signal is also observed in the Sc II line at 4247 A. Scandium has a single stable isotope (^{45}Sc), which shows HFS due to a nuclear spin I=7/2. We investigate the possibility of interpreting the linear polarization profile shown in the second solar spectrum by this Sc II line in terms of HFS. A two-level model atom with HFS is assumed. Adopting an optically thin slab model, the role of atomic polarization and of HFS is investigated, avoiding the complications caused by radiative transfer effects. The slab is assumed to be illuminated from below by the photospheric continuum, and the polarization of the radiation scattered at 90 degrees is investigated. The three-peak structure of the scattering polarization profile observed in this Sc II line cannot be fully explained in terms of HFS. Given the similarities between the Sc II line at 4247 A and the Ba II line at 4554 A, it is not clear why, within the same modeling assumptions, only the three-peak Q/I profile of the barium line can be fully interpreted in terms of HFS. The failure to interpret this Sc II polarization signal raises important questions, whose resolution might lead to significant improvements in our understanding of the second solar spectrum. In particular, if the three-peak structure of the Sc II signal is actually produced by a physical mechanism neglected within the approach considered here, it will be extremely interesting not only to identify this mechanism, but also to understand why it seems to be less important in the case of the barium line.Comment: 8 pages, 8 figures, and 1 table. Accepted for publication in Astronomy and Astrophysic
    • 

    corecore