21 research outputs found

    Sub-micrometre holotomographic characterisation of the effects of solution heat treatment on an AlMg7.3Si3.5 alloy

    Get PDF
    A strip cast AlMg7.3Si3.5 alloy is investigated by sub-micrometre holotomographic analysis achieving a voxel size of (60 nm)(3) by cone beam magnification of the focused synchrotron beam using Kirkpatrick-Baez mirrors. The three-dimensional microstructure of the same specimen volume in the as-cast state is compared with that after exposure to 540 degrees C for 30 min resolving microstructural features down to 180 nm. The three-dimensional analysis of the architecture of the eutectic Mg2Si and the Fe-aluminides reveals how the as-cast microstructure changes during the solution treatment. The alloy in the as-cast condition contains a highly interconnected seaweed-like Mg2Si eutectic. The level of three-dimensional interconnectivity of the Mg2Si eutectic phase decreases by only partial disintegration during the heat treatment correcting the two-dimensional metallographic impression of isolated round particles. Statistical analyses of the particle distribution, sphericity, mean curvatures and Gaussian curvatures describe quantitatively the architectural changes of the Mg2Si phase. This explains the decrease of the high temperature strength of the alloy by the solution treatment tested in hot compression. (C) 2012 Elsevier B.V. All rights reserved

    Effect of solution heat treatment on the internal architecture and compressive strength of an AlMg4.7Si8 alloy

    Get PDF
    The evolution of the microstructure of an AlMg4.7Si8 alloy is investigated by scanning electron microscopy and ex situ synchrotron tomography in as-cast condition and subsequent solution treatments for 1 h and 25 h at 540 °C, respectively. The eutectic Mg2Si phase, which presents a highly interconnected structure in the as-cast condition, undergoes significant morphological changes during the solution heat treatment. Statistical analyses of the particle distribution, the sphericity, the mean curvatures and Gaussian curvatures describe the disintegration of the interconnected seaweed-like structure followed by the rounding of the disintegrated fractions of the eutectic branches quantitatively. The ternary eutectic Si resulting from the Si-surplus to the stoichiometric Mg2Si ratio of the alloy undergoes similar changes. The morphological evolution during solution heat treatment is correlated with results of elevated temperature compression tests at 300 °C. The elevated temperature compressive strength is more sensitive to the degree of interconnectivity of the three dimensional Mg2Si network than to the shape of the individual particles. © 2013 Elsevier B.V. All rights reserved

    Characterization of cellular metals

    No full text
    International audienceno abstrac

    Characterization of closed-cell aluminium foams subjected to compressive loading

    No full text
    © 2016 by The Minerals, Metals & Materials Society. The mechanical response of closed-cell aluminium metallic foams subjected to low and high strain-rate loading has been investigated. A set of quasi-static and dynamic (shock) compressive tests have been conducted on closed-cell aluminium foams (CYMAT) with densities of 0.50 and 0.30 g/cc. Post-mortem characterization via optical microscopy and electron backscatter diffraction (EBSD) was performed on pristine and deformed specimens to elucidate the dominant deformation mechanisms in these materials. The combination of these techniques allowed for the assessment of critical deformation parameters such as changes in cell geometry and morphology, as well as microstructural evolution and deformation of the aluminium cellular network. These findings aim to aid in the design and development of optimized material structures for impact and blast protection
    corecore