21 research outputs found

    Microneedles: A New Frontier in Nanomedicine Delivery

    Get PDF
    This review aims to concisely chart the development of two individual research fields, namely nanomedicines, with specific emphasis on nanoparticles (NP) and microparticles (MP), and microneedle (MN) technologies, which have, in the recent past, been exploited in combinatorial approaches for the efficient delivery of a variety of medicinal agents across the skin. This is an emerging and exciting area of pharmaceutical sciences research within the remit of transdermal drug delivery and as such will undoubtedly continue to grow with the emergence of new formulation and fabrication methodologies for particles and MN. Firstly, the fundamental aspects of skin architecture and structure are outlined, with particular reference to their influence on NP and MP penetration. Following on from this, a variety of different particles are described, as are the diverse range of MN modalities currently under development. The review concludes by highlighting some of the novel delivery systems which have been described in the literature exploiting these two approaches and directs the reader towards emerging uses for nanomedicines in combination with MN

    RETRACTED ARTICLE: The Influence of Sodium Hyaluronate, l-Leucine and Sodium Taurocholate on the Nebulization of Aqueous Betamethasone-17-Valerate Suspensions

    No full text
    The purpose of this research was to evaluate the variables that are suggested to influence the adsorption of the hydrophilic hyaluronic acid (HA) onto the surface of the hydrophobic betamethasone-17-valerate (BV) particles in order to formulate a nebulizable suspension. The adsorption of HA from aqueous solutions (0.04% to 0.16%, w/v) to a fixed BV concentration (0.04%, w/v) under different experimental conditions, was investigated. The method of preparation of HA-BV suspensions involved suspending BV particles either in the hydrated HA solution (method 1) or in water followed by addition of solid HA (method 2). Other variables like the time required for the adsorption to complete and temperature at which adsorption is carried out were studied. The nebulization of the suspensions was tested via an air jet nebulizer connected to a twin stage impinger. In order to improve the nebulization behavior of the optimized suspension, l-leucine or sodium taurocholate was incorporated in increasing concentrations (0.01–0.04%, w/v). The optimized suspension, having a nebulization efficiency of 33.75%, was achieved following the adsorption of HA (0.1%, w/v) onto BV particles adopting method 2 of preparation and extending for three days at 4 °C. Incorporation of either l-leucine or sodium taurocholate significantly decreased the aggregate size of the optimized suspension and consequently caused significant increases in the nebulization efficiency to reach 46.87% and 56.25%, respectively

    Monitoring of urea and potassium by reverse iontophoresis in vitro

    Full text link
    Purpose. Reverse iontophoresis is an alternative to blood sampling for the monitoring of endogenous molecules. Here, the potential of the technique to measure urea and potassium levels non-invasively, and to track their concentrations during hemodialysis, has been examined. Materials and Methods. In vitro experiments were performed to test (a) a series of subdermal urea and potassium concentrations typical of the pathophysiologic range, and (b) a decreasing profile of urea and potassium subdermal concentrations to mimic those which are observed during hemodialysis. Results. (a) After 60-120 min of iontophoresis, linear relationships (p < 0.05) were established between both urea and potassium fluxes and their respective subdermal concentrations. The determination coefficients were above 0.9 after 1 h of current passage using sodium as an internal standard. (b) Reverse iontophoretic fluxes of urea and K+ closely paralleled the decay of the respective concentrations in the subdermal compartment, as would occur during a hemodialysis session. Conclusions. These in vitro experiments demonstrate that urea and potassium can be quantitatively and proportionately extracted by reverse iontophoresis, even when the subdermal concentrations of the analytes are varying with time. These results suggest the non-invasive monitoring of urea and potassium to diagnose renal failure and during hemodialysis is feasible, and that in vivo measurements are warranted
    corecore