62 research outputs found
Modeling the effect of subsurface interface defects on contact stiffness for ultrasonic atomic force microscopy
Cataloged from PDF version of article.We present a model predicting the effects of mechanical defects at layer interfaces on the contact stiffness measured by ultrasonicatomic force microscopy(AFM). Defects at subsurface interfaces result in changes at the local contact stiffness between the AFM tip and the sample. Surface impedance method is employed to model the imperfections and an iterative algorithm is used to calculate the AFM tip-surface contact stiffness. The sensitivity of AFM to voids or delaminations and disbonds is investigated for film-substrate combinations commonly used in microelectronic structures, and optimum defect depth for maximum sensitivity is defined. The effect of contact force and the tip properties on the defect sensitivity are considered. The results indicate that the ultrasonicAFM should be suitable for subsurface detection and its defect sensitivity can be enhanced by adjusting the applied force as well as by judicious choice of the AFM tip material and geometry.
© 2004 American Institute of Physic
Micromachinable ultrasonic leaky wave air transducers
Cataloged from PDF version of article.Ultrasonic air transducers using leaky waves on thin membranes are analyzed using perturbation and normal mode approaches. The transducers utilize the efficient coupling of ultrasonic energy to air through radiation of these leaky wave modes when their phase velocity is close to the sound speed in air. Theoretical results on optimum transducer dimensions and bandwidth estimation show that a minimum conversion loss of 8.7 dB with a 78% fractional bandwidth is possible. Common micromachining materials are shown to be suitable transducer materials and result in feasible devices. This is demonstrated by fabricating a 580 kHz transducer using a silicon membrane bonded to a ring of PZT-5H. With this configuration the transducer is self line focusing. Results of through transmission experiments on silicon and transmission images on paper are reported.
© 1998 American Institute of Physic
Note: Seesaw actuation of atomic force microscope probes for improved imaging bandwidth and displacement range
The authors describe a method of actuation for atomic force microscope (AFM) probes to improve imaging speed and displacement range simultaneously. Unlike conventional piezoelectric tube actuation, the proposed method involves a lever and fulcrum “seesaw” like actuation mechanism that uses a small, fast piezoelectric transducer. The lever arm of the seesaw mechanism increases the apparent displacement range by an adjustable gain factor, overcoming the standard tradeoff between imaging speed and displacement range. Experimental characterization of a cantilever holder implementing the method is provided together with comparative line scans obtained with contact mode imaging. An imaging bandwidth of 30 kHz in air with the current setup was demonstrated
- …