12 research outputs found

    Predator-prey Dynamics of Bald Eagles and Glaucous-winged Gulls at Protection Island, Washington, USA

    Get PDF
    1. Bald eagle (Haliaeetus leucocephalus) populations in North America rebounded in the latter part of the twentieth century, the result of tightened protection and outlawing of pesticides such as DDT. An unintended consequence of recovery may be a negative impact on seabirds. During the 1980s, few bald eagles disturbed a large glaucous‐winged gull (Larus glaucescens) colony on Protection Island, Washington, USA, in the Salish Sea. Breeding gull numbers in this colony rose nearly 50% during the 1980s and early 1990s. Beginning in the 1990s, a dramatic increase in bald eagle activity ensued within the colony, after which began a significant decline in gull numbers. 2. To examine whether trends in the gull colony could be explained by eagle activity, we fit a Lotka–Volterra‐type predator–prey model to gull nest count data and Washington State eagle territory data collected in most years between 1980 and 2016. Both species were assumed to grow logistically in the absence of the other. 3. The model fits the data with generalized R2 = 0.82, supporting the hypothesis that gull dynamics were due largely to eagle population dynamics. 4. Point estimates of the model parameters indicated approach to stable coexistence. Within the 95% confidence intervals for the parameters, however, 11.0% of bootstrapped parameter vectors predicted gull colony extinction. 5. Our results suggest that the effects of bald eagle activity on the dynamics of a large gull colony were explained by a predator–prey relationship that included the possibility of coexistence but also the possibility of gull colony extinction. This study serves as a cautionary exploration of the future, not only for gulls on Protection Island, but for other seabirds in the Salish Sea. Managers should monitor numbers of nests in seabird colonies as well as eagle activity within colonies to document trends that may lead to colony extinction

    The stranding anomaly as population indicator: the case of Harbour Porpoise <i>Phocoena phocoena</i> in North-Western Europe

    Get PDF
    Ecological indicators for monitoring strategies are expected to combine three major characteristics: ecological significance, statistical credibility, and cost-effectiveness. Strategies based on stranding networks rank highly in cost-effectiveness, but their ecological significance and statistical credibility are disputed. Our present goal is to improve the value of stranding data as population indicator as part of monitoring strategies by constructing the spatial and temporal null hypothesis for strandings. The null hypothesis is defined as: small cetacean distribution and mortality are uniform in space and constant in time. We used a drift model to map stranding probabilities and predict stranding patterns of cetacean carcasses under H-0 across the North Sea, the Channel and the Bay of Biscay, for the period 1990-2009. As the most common cetacean occurring in this area, we chose the harbour porpoise <i>Phocoena phocoena</i> for our modelling. The difference between these strandings expected under H-0 and observed strandings is defined as the stranding anomaly. It constituted the stranding data series corrected for drift conditions. Seasonal decomposition of stranding anomaly suggested that drift conditions did not explain observed seasonal variations of porpoise strandings. Long-term stranding anomalies increased first in the southern North Sea, the Channel and Bay of Biscay coasts, and finally the eastern North Sea. The hypothesis of changes in porpoise distribution was consistent with local visual surveys, mostly SCANS surveys (1994 and 2005). This new indicator could be applied to cetacean populations across the world and more widely to marine megafauna
    corecore