26 research outputs found

    A Non-Canonical Role for p27\u3csup\u3eKip1\u3c/sup\u3e in Restricting Proliferation of Corneal Endothelial Cells During Development

    Get PDF
    This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. The cell cycle regulator p27Kip1 is a critical factor controlling cell number in many lineages. While its anti-proliferative effects are well-established, the extent to which this is a result of its function as a cyclin-dependent kinase (CDK) inhibitor or through other known molecular interactions is not clear. To genetically dissect its role in the developing corneal endothelium, we examined mice harboring two loss-of-function alleles, a null allele (p27−) that abrogates all protein function and a knockin allele (p27CK−) that targets only its interaction with cyclins and CDKs. Whole-animal mutants, in which all cells are either homozygous knockout or knockin, exhibit identical proliferative increases (~0.6-fold) compared with wild-type tissues. On the other hand, use of mosaic analysis with double markers (MADM) to produce infrequently-occurring clones of wild-type and mutant cells within the same tissue environment uncovers a roughly three- and six-fold expansion of individual p27CK−/CK− and p27−/− cells, respectively. Mosaicism also reveals distinct migration phenotypes, with p27−/− cells being highly restricted to their site of production and p27CK−/CK− cells more widely scattered within the endothelium. Using a density-based clustering algorithm to quantify dispersal of MADM-generated clones, a four-fold difference in aggregation is seen between the two types of mutant cells. Overall, our analysis reveals that, in developing mouse corneal endothelium, p27 regulates cell number by acting cell autonomously, both through its interactions with cyclins and CDKs and through a cyclin-CDK-independent mechanism(s). Combined with its parallel influence on cell motility, it constitutes a potent multi-functional effector mechanism with major impact on tissue organization

    Accelerated Turnover of Taste Bud Cells in Mice Deficient for the Cyclin-Dependent Kinase Inhibitor p27\u3csup\u3ekip1\u3c/sup\u3e

    Get PDF
    Background: Mammalian taste buds contain several specialized cell types that coordinately respond to tastants and communicate with sensory nerves. While it has long been appreciated that these cells undergo continual turnover, little is known concerning how adequate numbers of cells are generated and maintained. The cyclin-dependent kinase inhibitor p27Kip1 has been shown to influence cell number in several developing tissues, by coordinating cell cycle exit during cell differentiation. Here, we investigated its involvement in the control of taste cell replacement by examining adult mice with targeted ablation of the p27Kip1 gene.Results: Histological and morphometric analyses of fungiform and circumvallate taste buds reveal no structural differences between wild-type and p27Kip1-null mice. However, when examined in functional assays, mutants show substantial proliferative changes. In BrdU incorporation experiments, more S-phase-labeled precursors appear within circumvallate taste buds at 1 day post-injection, the earliest time point examined. After 1 week, twice as many labeled intragemmal cells are present, but numbers return to wild-type levels by 2 weeks. Mutant taste buds also contain more TUNEL-labeled cells and 50% more apoptotic bodies than wild-type controls. In normal mice, p27 Kip1 is evident in a subset of receptor and presynaptic taste cells beginning about 3 days post-injection, correlating with the onset of taste cell maturation. Loss of gene function, however, does not alter the proportions of distinct immunohistochemically-identified cell types.Conclusions: p27Kip1 participates in taste cell replacement by regulating the number of precursor cells available for entry into taste buds. This is consistent with a role for the protein in timing cell cycle withdrawal in progenitor cells. The equivalence of mutant and wild-type taste buds with regard to cell number, cell types and general structure contrasts with the hyperplasia and tissue disruption seen in certain developing p27Kip1-null sensory organs, and may reflect a compensatory capability inherent in the regenerative taste system

    3D Map of the Human Corneal Endothelial Cell

    Get PDF
    Corneal endothelial cells (CECs) are terminally differentiated cells, specialized in regulating corneal hydration and transparency. They are highly polarized flat cells that separate the cornea from the aqueous humor. Their apical surface, in contact with aqueous humor is hexagonal, whereas their basal surface is irregular. We characterized the structure of human CECs in 3D using confocal microscopy of immunostained whole corneas in which cells and their interrelationships remain intact. Hexagonality of the apical surface was maintained by the interaction between tight junctions and a submembraneous network of actomyosin, braced like a drum. Lateral membranes, which support enzymatic pumps, presented complex expansions resembling interdigitated foot processes at the basal surface. Using computer-aided design and drafting software, we obtained a first simplified 3D model of CECs. By comparing their expression with those in epithelial, stromal and trabecular corneal cells, we selected 9 structural or functional proteins for which 3D patterns were specific to CECs. This first 3D map aids our understanding of the morphologic and functional specificity of CECs and could be used as a reference for characterizing future cell therapy products destined to treat endothelial dysfunctions

    Accelerated turnover of taste bud cells in mice deficient for the cyclin-dependent kinase inhibitor p27Kip1

    Get PDF
    Background: Mammalian taste buds contain several specialized cell types that coordinately respond to tastants and communicate with sensory nerves. While it has long been appreciated that these cells undergo continual turnover, little is known concerning how adequate numbers of cells are generated and maintained. The cyclin-dependent kinase inhibitor p27Kip1 has been shown to influence cell number in several developing tissues, by coordinating cell cycle exit during cell differentiation. Here, we investigated its involvement in the control of taste cell replacement by examining adult mice with targeted ablation of the p27Kip1 gene.Results: Histological and morphometric analyses of fungiform and circumvallate taste buds reveal no structural differences between wild-type and p27Kip1-null mice. However, when examined in functional assays, mutants show substantial proliferative changes. In BrdU incorporation experiments, more S-phase-labeled precursors appear within circumvallate taste buds at 1 day post-injection, the earliest time point examined. After 1 week, twice as many labeled intragemmal cells are present, but numbers return to wild-type levels by 2 weeks. Mutant taste buds also contain more TUNEL-labeled cells and 50% more apoptotic bodies than wild-type controls. In normal mice, p27 Kip1 is evident in a subset of receptor and presynaptic taste cells beginning about 3 days post-injection, correlating with the onset of taste cell maturation. Loss of gene function, however, does not alter the proportions of distinct immunohistochemically-identified cell types.Conclusions: p27Kip1 participates in taste cell replacement by regulating the number of precursor cells available for entry into taste buds. This is consistent with a role for the protein in timing cell cycle withdrawal in progenitor cells. The equivalence of mutant and wild-type taste buds with regard to cell number, cell types and general structure contrasts with the hyperplasia and tissue disruption seen in certain developing p27Kip1-null sensory organs, and may reflect a compensatory capability inherent in the regenerative taste system

    Expression of the Cyclin-Dependent Kinase Inhibitor p27Kip1 by Developing Retinal Pigment Epithelium

    No full text
    The cyclin-dependent kinase (Cdk) inhibitor p27Kip1 contributes to the timing of cell cycle withdrawal during development and, consequently, in organogenesis. Within the retina, this effector protein is up-regulated during the birth of neuronal and glial cells [Dev. Biol. (2000) 299]. However, its expression within the retinal pigment epithelium (RPE), a supporting cell layer that is essential for neural retina development and function, has not previously been reported. We show that p27Kip1 protein expression in the RPE occurs in two phases: an up-regulation during mid-to late embryonic stages and a down-regulation during the subsequent postnatal period. In the early phase of up-regulation, an inverse relationship is seen between expression of p27Kip1 and PCNA, an indicator of cycling cells. During both up-and down-regulation, the change in spatial pattern of expression proceeds in a central to peripheral manner, with p27Kip1 up-regulation paralleling retinal maturation. These data suggest that this cell cycle regulator may be an important factor controlling the timing of RPE cell cycle withdrawal

    Epidermal Growth Factor Stimulation of RPE Cell Survival: Contribution of Phosphatidylinositol 3-Kinase and Mitogen-Activated Protein Kinase Pathways

    No full text
    Epidermal growth factor (EGF) previously has been shown to stimulate short-term survival in vitro of cells derived from the native amphibian retinal pigment epithelium (RPE). In the present experiments, we have examined intracellular signaling pathways responsible for mediating these survival-specific growth factor effects, distinct from proliferative effects, using the human epithelial cell line RPE D407. When maintained as single cells in suspension culture in the absence of serum and exogenous survival factors, RPE D407 cell viability gradually declined over a 3-4 day period as a result of apoptotic cell death, a pattern similar to that seen for eye-derived RPE cells. Exposure to EGF (50 ng ml-1) enhanced cell survival by nearly 40% and caused a parallel increase in the tyrosine phosphate content of the EGF receptor (EGFR), as determined by immunoprecipitation and Western blotting. Both effects were completely blocked by 1μM AG1478, an EGFR-selective tyrosine kinase inhibitor. EGF also stimulated phosphorylation of the phosphatidylinositol 3′-kinase (PI3K)-dependent effector kinase Akt, as well as that of the MEK-dependent mitogen-activated kinase (MAPK), extracellular signal-regulated kinase (ERK). Furthermore, EGF-induced protection was substantially reduced by either the PI3K inhibitor LY294002 (25μM) or the MEK inhibitor U0126 (10μM), under conditions in which phosphorylation of Akt and ERK1/2, respectively, was blocked. Our results indicate that EGF-stimulated survival of RPE D407 cells takes place as a result of signaling through both PI3K and ERK/MAPK pathways. Further, residual anti-apoptotic activity stimulated by EGF in the presence of both blockers suggests that additional as yet unidentified growth factor-dependent survival pathways exist

    Evidence for β\u3csub\u3e1\u3c/sub\u3e-Integrins on Both Apical and Basal Surfaces of Xenopus Retinal Pigment Epithelium

    No full text
    The retinal pigment epithelium (RPE) is a transporting epithelium with polarized membrane domains. A unique characteristic of these cells is that their apical surface does not face a lumenal space, but is directly apposed to a layer of neurons (photoreceptors) and their associated extracellular matrix. Because the interaction occurring at this site is important for retinal attachment and particle phagocytosis, an attempt was made to identify epithelial molecules which potentially could mediate cell-cell or cell-matrix adhesion. In the present report, the subcellular localization of β1-integrins, the main receptors for extracellular matrix ligands, has been examined within Xenopus RPE. Several previously characterized antibodies were used in this analysis including: two rabbit polyclonal antibodies directed against purified chick muscle fibronectin receptor (pAbs No. 3818 and No. 2999), and a monoclonal antibody specific for Xenopus β1-integrin subunit (mAb 8C8). In Western blots of whole epithelial cell extracts, each of the antibodies intensely labeled a 115 kDa band, consistent with β1-integrin reactivity. One of the reagents (pAb No. 3818) also weakly stained unidentified bands of 50 and 100 kDa. Pre-clearing experiments demonstrated that pAb No. 3818 and mAb 8C8 both recognize the same detergent-soluble integrin: when cell extracts were depleted of β1-integrin by immunoprecipitation with mAb 8C8, the 115 kDa antigen recognized by pAb No. 3818 was not observed. Consistent with their similar immunochemical reactivities, each of the antibodies produced equivalent immunocytochemical staining of many eyecup tissues, including extraocular skeletal muscle cells, scleral and choroidal fibroblasts and vascular endothelium of the choroid and neural retina. In the native RPE, and isolated sheets of epithelium, however, qualitative differences in labeling between these antibodies were evident. Analysis by confocal microscopy showed that, while all three antibodies stained the basal surface of the epithelium, pAb No. 3818 also strongly labeled the apical microvillar surface. As the adjacent photoreceptors did not cross-react with this antibody in control experiments, the apical RPE staining could not be accounted for as contamination with retinal tissues during isolation. Furthermore, when the apical cell surface was selectively biotinylated in situ, and biotinylated proteins precipitated by streptavidin-agarose, β1-integrin was detected by immunoblotting with both mAb 8C8 and pAb No. 3818. This domain-specific material, however, represented only a fraction of the whole cell surface integrin: substantially greater amounts of tagged molecules could be detected when isolated epithelial sheets were biotinylated, most likely representing the basal protein. Based on these results, it can be concluded that β1-integrin is present in both basal and apical RPE plasma membranes. Molecules present in the apical, membrane may represent components of adhesion receptors responsible for retina-epithelium interactions

    Retinal Pigment Epithelial Cells From Dystrophic Rats Form Normal Tight Junctions in Vitro

    No full text
    Purpose. In the genetically defective Royal College of Surgeons (RCS) rat model for retinal degeneration, a breakdown occurs in the retinal pigment epithelial (RPE) cell tight junctions just as the photoreceptors begin to degenerate. These experiments sought to determine the impact of the RPE genetic defect on this alteration in the RPE cell tight junctions. Methods. Retinal pigment epithelial cell cultures prepared from RCS and control rats were treated with hormonally defined medium (HDM), base medium conditioned by RCS or control retinas, or unconditioned base medium. The tight junctions formed by these cultures were assayed functionally by measuring transepithelial electrical resistance and permeability. Junction structure was evaluated by immunolocalization of the tight junction protein zonula occludens I and of the junction-associated actin microfilaments. Results. Retinal pigment epithelial cultures from dystrophic rats formed structurally and functionally normal tight junctions when maintained in hormonally defined medium. The junctions remained stable when the medium bathing the apical surface was switched to base medium preconditioned by normal retinas. In contrast, cultures treated with medium preconditioned by degenerating dystrophic retinas or with unconditioned medium exhibited a breakdown in their tight junctions. Conclusions. Retinal pigment epithelial cells isolated from dystrophic RCS rats can form tight junctions normally in vitro. Normal, but not dystrophic, retinas release factors that support RPE tight junctions. Therefore, the junctional abnormality seen in dystrophic rat RPE cells in vivo is probably caused by the loss of trophic factors normally provided by the healthy neural retina rather than by a direct effect of the genetic defect on the tight junctions

    Survival of the Retinal Pigment Epithelium in Vitro: Comparison of Freshly Isolated and Subcultured Cells

    No full text
    Cells of the retinal pigment epithelium (RPE) are generated prenatally and generally survive the lifetime of the individual without undergoing proliferation or replacement. Therefore, the mechanisms promoting individual RPE cell survival and longevity in vivo may be distinct from, or a limited subset of, the mechanisms known to promote survival in proliferative cells in culture. To identify specific factors that sustain cell viability independent of effects on cell division, we studied RPE cells in low-density suspension culture, in which cell proliferation is inhibited. Single cells from Xenopus laevis eyes were plated onto a non-adhesive surface in protein-free medium, then assayed for survival using the 3-(4, 5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay. Cell viability in these cultures was essentially undiminished over the initial 2 days. However, by approximately 1 week in culture, only an average of 53% of the cells remained alive. Plating cells on a fibronectin-coated substratum significantly enhanced survival, such that the number of cells alive at 1 week was 80-90% of the initial level. Essentially identical results were obtained with laminin- or collagen IV-coated substrata, or with insulin (5μg ml-1) in the medium. The absence of cell division in these cultures was confirmed by cell counting and BrdU incorporation experiments. Interestingly, in suspension cultures derived from monolayers previously established on microporous membrane filters, cells lost viability much faster (average of 80% dead at 3 days), and showed a relatively greater response to extracellular matrix proteins (five-fold increase in cell survival at 3 days). Enhanced RPE survival in response to fibronectin required spreading of the cell on a substratum, rather than mere adherence, as there was a high correlation between the percentage of spread cells and the percentage that were MTT-positive (r = 0·940). Cell spreading apparently enhanced survival by preventing the initiation of programmed cell death: unattached non-viable cells in culture exhibited morphological features expected of apoptosis, as well as positive staining by the TUNEL reaction. These studies demonstrate that, of several factors shown to maintain or increase cell number in proliferating cultures, some have their effect, at least in part, by promoting the survival of individual cells. The increased susceptibility of subcultured RPE to cell death has implications for clinical transplantation applications that may require manipulation of RPE in vitro
    corecore