18 research outputs found

    Formation of filopodia-like bundles in vitro from a dendritic network

    Get PDF
    We report the development and characterization of an in vitro system for the formation of filopodia-like bundles. Beads coated with actin-related protein 2/3 (Arp2/3)–activating proteins can induce two distinct types of actin organization in cytoplasmic extracts: (1) comet tails or clouds displaying a dendritic array of actin filaments and (2) stars with filament bundles radiating from the bead. Actin filaments in these bundles, like those in filopodia, are long, unbranched, aligned, uniformly polar, and grow at the barbed end. Like filopodia, star bundles are enriched in fascin and lack Arp2/3 complex and capping protein. Transition from dendritic to bundled organization was induced by depletion of capping protein, and add-back of this protein restored the dendritic mode. Depletion experiments demonstrated that star formation is dependent on Arp2/3 complex. This poses the paradox of how Arp2/3 complex can be involved in the formation of both branched (lamellipodia-like) and unbranched (filopodia-like) actin structures. Using purified proteins, we showed that a small number of components are sufficient for the assembly of filopodia-like bundles: Wiskott-Aldrich syndrome protein (WASP)–coated beads, actin, Arp2/3 complex, and fascin. We propose a model for filopodial formation in which actin filaments of a preexisting dendritic network are elongated by inhibition of capping and subsequently cross-linked into bundles by fascin

    Kinetochore genes are coordinately up-regulated in human tumors as part of a FoxM1-related cell division program

    Get PDF
    The key player in directing proper chromosome segregation is the macromolecular kinetochore complex, which mediates DNA–microtubule interactions. Previous studies testing individual kinetochore genes documented examples of their overexpression in tumors relative to normal tissue, leading to proposals that up-regulation of specific kinetochore genes may promote tumor progression. However, kinetochore components do not function in isolation, and previous studies did not comprehensively compare the expression behavior of kinetochore components. Here we analyze the expression behavior of the full range of human kinetochore components in diverse published expression compendia, including normal tissues and tumor samples. Our results demonstrate that kinetochore genes are rarely overexpressed individually. Instead, we find that core kinetochore genes are coordinately regulated with other cell division genes under virtually all conditions. This expression pattern is strongly correlated with the expression of the forkhead transcription factor FoxM1, which binds to the majority of cell division promoters. These observations suggest that kinetochore gene up-regulation in cancer reflects a general activation of the cell division program and that altered expression of individual kinetochore genes is unlikely to play a causal role in tumorigenesis.Leukemia & Lymphoma Society of America (Scholar Award)National Institute of General Medical Sciences (U.S.) (Grant GM088313)American Cancer Society (Research Scholar Grant 121776)National Science Foundation (U.S.). Graduate Research Fellowshi

    The type III effector EspF coordinates membrane trafficking by the spatiotemporal activation of two eukaryotic signaling pathways

    Get PDF
    Bacterial toxins and effector proteins hijack eukaryotic enzymes that are spatially localized and display rapid signaling kinetics. However, the molecular mechanisms by which virulence factors engage highly dynamic substrates in the host cell environment are poorly understood. Here, we demonstrate that the enteropathogenic Escherichia coli (EPEC) type III effector protein EspF nucleates a multiprotein signaling complex composed of eukaryotic sorting nexin 9 (SNX9) and neuronal Wiskott-Aldrich syndrome protein (N-WASP). We demonstrate that a specific and high affinity association between EspF and SNX9 induces membrane remodeling in host cells. These membrane-remodeling events are directly coupled to N-WASP/Arp2/3–mediated actin nucleation. In addition to providing a biochemical mechanism of EspF function, we find that EspF dynamically localizes to membrane-trafficking organelles in a spatiotemporal pattern that correlates with SNX9 and N-WASP activity in living cells. Thus, our findings suggest that the EspF-dependent assembly of SNX9 and N-WASP represents a novel form of signaling mimicry used to promote EPEC pathogenesis and gastrointestinal disease

    Differential Requirements for Clathrin-dependent Endocytosis at Sites of Cell–Substrate Adhesion

    Get PDF
    Little is known about the influences of cell–substrate attachment in clathrin-mediated endocytosis. We find that cell–substrate adhesion reduces the rate of endocytosis. In addition, we demonstrate that actin assembly is differentially required for efficient endocytosis, with a stronger requirement for actin dynamics at sites of adhesion

    Cortical Patches on the Move

    Get PDF
    AbstractEndocytosis is the primary means by which eukaryotic cells internalize materials from the environment. However, while many components of the endocytic machinery are known, the timing of molecular events leading to endocytosis remains undefined. In this issue of Cell, Kaksonen et al. use real-time microscopy to define the temporal assembly of components of the endocytic machinery in the yeast S. cerevisiae. They also provide new insight into how the actin cytoskeleton is coordinated with the endocytic machinery

    Saksılı arçek olarak pazarlama olanağı bulunan bazı ilkbahar ve yaz arçeklerinin morfolojik özellikleri

    No full text
    Bu tezin, veri tabanı üzerinden yayınlanma izni bulunmamaktadır. Yayınlanma izni olmayan tezlerin basılı kopyalarına Üniversite kütüphaneniz aracılığıyla (TÜBESS üzerinden) erişebilirsiniz.ÖZ ET Denemelerimizde, değişik ortamlara (örtü içi - açık ha va) ekilen bazı ilkbahar ve. yaz çiçeklerinin gelişme (vege - tasyon) süreleri gözlenmiş, bazı morfolojik özellikleriyle çiçeklenme dönemleri saptanmaya çalışılmıştır. Denemeler sonucu- 37 - 7 -ÖZ ET Denemelerimizde, değişik ortamlara (örtü içi - açık ha va) ekilen bazı ilkbahar ve. yaz çiçeklerinin gelişme (vege - tasyon) süreleri gözlenmiş, bazı morfolojik özellikleriyle çiçeklenme dönemleri saptanmaya çalışılmıştır. Denemeler sonuc

    An Assembly-incompetent Mutant Establishes a Requirement for Dynamin Self-assembly in Clathrin-mediated Endocytosis In Vivo

    No full text
    Dynamin GTPase activity is required for its biological function in clathrin-mediated endocytosis; however, the role of self-assembly has not been unambiguously established. Indeed, overexpression of a dynamin mutant, Dyn1-K694A, with impaired ability to self-assemble has been shown to stimulate endocytosis in HeLa cells (Sever et al., Nature 1999, 398, 481). To identify new, assembly-incompetent mutants of dynamin 1, we made point mutations in the GTPase effector/assembly domain (GED) and tested for their effects on self-assembly and clathrin-mediated endocytosis. Mutation of three residues, I690, K694, and I697, suggests that interactions with an amphipathic helix in GED are required for self-assembly. In particular, Dyn1-I690K failed to exhibit detectable assembly-stimulated GTPase activity under all assay conditions. Overexpression of this assembly-incompetent mutant inhibited transferrin endocytosis as potently as the GTPase-defective dominant-negative mutant, Dyn1-K44A. However, worm-like endocytic intermediates accumulated in cells expressing Dyn1-I690K that were structurally distinct from long tubules that accumulated in cells expressing Dyn1-K44A. Together these results provide new structural insight into the role of GED in self-assembly and assembly-stimulated GTPase activity and establish that dynamin self-assembly is essential for clathrin-mediated endocytosis

    SNX9 Regulates Dynamin Assembly and Is Required for Efficient Clathrin-mediated Endocytosis

    No full text
    Dynamin, a central player in clathrin-mediated endocytosis, interacts with several functionally diverse SH3 domain-containing proteins. However, the role of these interactions with regard to dynamin function is poorly defined. We have investigated a recently identified protein partner of dynamin, SNX9, sorting nexin 9. SNX9 binds directly to both dynamin-1 and dynamin-2. Moreover by stimulating dynamin assembly, SNX9 stimulates dynamin's basal GTPase activity and potentiates assembly-stimulated GTPase activity on liposomes. In fixed cells, we observe that SNX9 partially localizes to clathrin-coated pits. Using total internal reflection fluorescence microscopy in living cells, we detect a transient burst of EGFP-SNX9 recruitment to clathrin-coated pits that occurs during the late stages of vesicle formation and coincides spatially and temporally with a burst of dynamin-mRFP fluorescence. Transferrin internalization is inhibited in HeLa cells after siRNA-mediated knockdown of SNX9. Thus, our results establish that SNX9 is required for efficient clathrin-mediated endocytosis and suggest that it functions to regulate dynamin activity
    corecore