6 research outputs found

    Degradation of Internalized αvβ5 Integrin Is Controlled by uPAR Bound uPA: Effect on β1 Integrin Activity and α-SMA Stress Fiber Assembly

    Get PDF
    Myofibroblasts (Mfs) that persist in a healing wound promote extracellular matrix (ECM) accumulation and excessive tissue contraction. Increased levels of integrin αvβ5 promote the Mf phenotype and other fibrotic markers. Previously we reported that maintaining uPA (urokinase plasminogen activator) bound to its cell-surface receptor, uPAR prevented TGFβ-induced Mf differentiation. We now demonstrate that uPA/uPAR controls integrin β5 protein levels and in turn, the Mf phenotype. When cell-surface uPA was increased, integrin β5 levels were reduced (61%). In contrast, when uPA/uPAR was silenced, integrin β5 total and cell-surface levels were increased (2–4 fold). Integrin β5 accumulation resulted from a significant decrease in β5 ubiquitination leading to a decrease in the degradation rate of internalized β5. uPA-silencing also induced α-SMA stress fiber organization in cells that were seeded on collagen, increased cell area (1.7 fold), and increased integrin β1 binding to the collagen matrix, with reduced activation of β1. Elevated cell-surface integrin β5 was necessary for these changes after uPA-silencing since blocking αvβ5 function reversed these effects. Our data support a novel mechanism by which downregulation of uPA/uPAR results in increased integrin αvβ5 cell-surface protein levels that regulate the activity of β1 integrins, promoting characteristics of the persistent Mf

    Comprehensive Profiling of N‑Linked Glycosylation Sites in HeLa Cells Using Hydrazide Enrichment

    Get PDF
    The adenocarcinoma cell line HeLa serves as a model system for cancer research in general and cervical cancer in particular. In this study, hydrazide enrichment in combination with state-of-the art nanoLC−MS/MS analysis was used to profile N-linked glycosites in HeLa cells. N-Linked glycoproteins were selectively enriched in HeLa cells by the hydrazide capture method, which isolates all glycoproteins independent of their glycans. Nonglycosylated proteins were removed by extensive washing. N-Linked glycoproteins were identified with the specific NXT/S motif and deamidated asparagine (N). Deglycosylation was carried out in both H_2 (^16)O and H_2 ^(18)O to confirm the deamidation. NanoLC−MS/MS analysis indicated that the method selectively enriched at least 100 fold N-linked glycosites in HeLa cells. When both the membrane and cytosolic fractions were used, a total of 268 unique N-glycosylation sites were identified corresponding to 106 glycoproteins. Bioinformatic analysis revealed that most of the glycoproteins identified are known to have an impact on cancer and have been proposed as biomarkers
    corecore