15 research outputs found

    Mathematical formulation to predict the harmonics of the superconducting Large Hadron Collider magnets : III. Precycle ramp rate effects and magnet characterization

    Get PDF
    The Large Hadron Collider (LHC) at CERN is equipped with a feed-forward control system known as the field description for the LHC (FiDeL) which is designed to predict the magnetic field and its multipoles, hence reducing the burden on beam based feedback. FiDeL consists of a physical and empirical parametric field model based on magnetic measurements at warm and in cryogenic conditions. It is particularly critical during beam injection when the field decays and at the beginning of acceleration when the field snaps back. It is known that the decay amplitude is largely affected by the powering history of the magnet, particularly by the precycle flattop current and duration and the preinjection preparation duration. Recently, we have collected data that quantify the dependence of the decay amplitude on the precycle ramp rate. This paper presents the results of the measurements performed to investigate this effect, and the method included in FiDeL to model the precycle dependence.With this complete picture of dynamic changes, we finally discuss the effect on the data taken at nominally constant field, along the magnet loadline. We show that a correction for dynamic changes is required for adequate magnet characterization.peer-reviewe

    Dependence of the static and dynamic field quality of the LHC superconducting dipole magnets on the pre-cycle ramp rate

    Get PDF
    The allowed multipoles in the Large Hadron Collider (LHC) superconducting dipole magnets decay whilst on a constant current plateau. It is known that the decay amplitude is largely affected by the powering history of the magnet, and particularly by the pre-cycle flat top current and duration and the pre-injection preparation duration. Recently, it was observed that the decay amplitude is also highly dependent on the pre-cycle ramp rate, which has an indirect effect also on the sample of data taken at constant field along the magnet loadlines. This is an important consideration to be included in the Field Description for the LHC (FiDeL), to cope with the difference between the test procedure followed for series tests and the expected cycles during the machine operation. This paper presents the results of the measurements performed to investigate this phenomenon and describes the method included in FiDeL to represent this dependence.peer-reviewe

    Axion Search by Laser-based Experiment OSQAR

    Get PDF
    International audienceLaser-based experimentOSQAR in CERN is aimed to the search of the axions by twomethods. The photon regeneration experiment is using two LHC dipole magnets of the length 14.3 m and magnetic field 9.5 T equipped with an optical barrier at the end of the first magnet. It looks as light shining through the wall. No excess of events above the background was detected at this arrangement. Nevertheless, this result extends the exclusion region for the axion mass. The second method wants to measure the ultra-fine Vacuum Magnetic Birefringence for the first time. An optical scheme with electro-optical modulator has been proposed, validated and subsequently improved. Cotton-Mouton constant for air was determined in this experiment setup

    High-temperature superconducting screens for magnetic field-error cancellation in accelerator magnets

    Get PDF
    Accelerators magnets must have minimal magnetic field imperfections to reduce particle-beam instabilities. In the case of coils made of high-temperature superconducting (HTS) tapes, the magnetization due to persistent currents adds an undesired field contribution, potentially degrading the magnetic field quality. In this paper we study the use of superconducting screens based on HTS tapes for reducing the magnetic field imperfections in accelerator magnets. The screens exploit the magnetization by persistent currents to cancel out the magnetic field error. The screens are aligned with the main field component, such that only the undesired field components are compensated. The screens are self-regulating, and do not require any externally applied source of energy. Measurements in liquid nitrogen at 77 K show for dipole-field configurations a significant reduction of the magnetic field error up to a factor of four. The residual error is explained via numerical simulations accounting for the geometric defects in the HTS screens, achieving satisfactory agreement with experimental results. Simulations show that if screens are increased in width and thickness, and operated at 4.5 K, field errors may be eliminated almost entirely for the typical excitation cycles of accelerator magnets

    A demonstration experiment for the main field tracking and the sextupole and decapole compensation in the LHC main magnets

    Get PDF
    A dedicated measurement campaign was set up to test the FiDeL concept and its LSA implementation. The test was performed by demonstrating the tracking of B1 and B2 for two LHC main dipoles and one LHC main quadrupole. It also included the compensation of the b3 and b5 harmonics in the dipole magnets using the sextupole and decapole corrector magnets. In this report we present the techniques developed to power the magnets for these tests during the current ramps; the instrumentation and data acquisition setup used to perform the tracking experiments; the calibration procedure and data corrections employed; and finally the main results obtained.peer-reviewe

    Focusing strength measurements of the main quadrupoles for the LHC

    Get PDF
    More than 1100 quadrupole magnets of different types are needed for the Large Hadron Collider (LHC) which is in the construction stage at CERN. The most challenging parameter to measure on these quadrupoles is the integrated gradient (Gdl). An absolute accuracy of 0.1% is needed to control the beta beating. In this paper we briefly describe the whole set of equipment used for Gdl measurements: Automated Scanner system, Single Stretched Wire system and Twin Coils system, concentrating mostly on their absolute accuracies. Most of the possible inherent effects that can introduce systematic errors are discussed along with their preventive methods. In the frame of this qualification some of the magnets were tested with two systems. The results of the intersystem cross-calibrations are presented. In addition, the qualification of the measurement system used at the magnet manufacturer's is based on results of more than 40 quadrupole assemblies tested in cold conditions at CERN and in warm conditions at the vendor site.peer-reviewe

    Main field tracking measurement in the LHC superconducting dipole and quadrupole magnets

    Get PDF
    One of the most stringent requirements during the energy ramp of the Large Hadron Collider (LHC) is to have a constant ratio between dipole-quadrupole and dipole-dipole field so as to control the variation of the betatron tune and of the beam orbit throughout the acceleration phase, hence avoiding particle loss. To achieve the nominal performance of the LHC, a maximum variation of ±0.003 tune units can be tolerated. For the commissioning with low intensity beams, acceptable bounds are up to 30 times higher. For the quadrupole-dipole integrated field ratio, the above requirements translate in the tight windows of 6 ppm and 180 ppm, while for dipole differences between sectors the acceptable error is of the order of 10^-4. Measurement and control at this level are challenging. For this reason we have launched a dedicated measurement R&D to demonstrate that these ratios can be measured and controlled within the limits for machine operation. In this paper we present the techniques developed to power the magnets during the current ramps, the instrumentation and data acquisition setup used to perform the tracking experiments, the calibration procedure and the data reduction employed.peer-reviewe

    A demonstration experiment for the forecast of magnetic field and field errors in the Large Hadron Collider

    Get PDF
    In order to reduce the burden on the beam-based feedback, the Large Hadron Collider control system is equipped with the Field Description for the LHC (FiDeL) which provides a forecast of the magnetic field and the multipole field errors. FiDeL has recently been extensively tested at CERN to determine main field tracking, multipole forecasting and compensation accuracy. This paper describes the rationale behind the tests, the procedures employed to power the main magnets and their correctors, and finally, we present the results obtained. We also give an indication of the prediction accuracy that the system can deliver during the operation of the LHC and we discuss the implications that these will have on the machine performance.peer-reviewe

    Progress of the Laser-based Experiment OSQAR

    Get PDF
    International audienceOSQAR experiment at CERN is based on two laser methods for search of axions and scalar particles. The light shining through the wall experiment has been using two LHC dipole magnets with an optical barrier, argon laser, and cooled 2D CCD detector for the measuring of expected regenerated photons. The second method wants to measure the Vacuum Magnetic Birefringence. An optical set-up with electro-optical modulator has been proposed, validated and subsequently improved in collaborating institutes. Cotton-Muton effect in nitrogen was measured by this method. Prototype of a one-meter long laser cavity was developed for this experiment

    The magnetic model of the LHC in the early phase of beam commissioning

    Get PDF
    The relation between field and current in each family of the Large Hadron Collider magnets is modelled with a set of empirical equations (FiDeL) whose free parameters are fit on magnetic measurements. They take into account residual magnetization, persistent currents, hysteresis, saturation, decay and snapback during initial part of the ramp. Here we give a first summary of the reconstruction of the magnetic field properties based on the beam observables (orbit, tune, coupling, chromaticity) and a comparison with the expectations. The most critical issues for the machine performance in terms of knowledge of the relation magnetic field vs current are pointed out.peer-reviewe
    corecore