52 research outputs found

    Dependence of the Static and Dynamic Field Quality of the LHC Superconducting Dipole Magnets on the Pre-Cycle Ramp Rate

    Get PDF
    The allowed multipoles in the Large Hadron Collider (LHC) superconducting dipole magnets decay whilst on a constant current plateau. It is known that the decay amplitude is largely affected by the powering history of the magnet, and particularly by the pre-cycle flat top current and duration and the pre-injection preparation duration. Recently, it was observed that the decay amplitude is also highly dependent on the pre-cycle ramp rate, which has an indirect effect also on the sample of data taken at constant field along the magnet loadlines. This is an important consideration to be included in the Field Description for the LHC (FiDeL), to cope with the difference between the test procedure followed for series tests and the expected cycles during the machine operation. This paper presents the results of the measurements performed to investigate this phenomenon and describes the method included in FiDeL to represent this dependence

    Magnetic Measurement of Alignment of Main LHC Dipoles and Associated Correctors

    Get PDF
    We discuss the method developed for the verification of alignment of magnetic elements contained in the LHC cryodipole cold mass during series tests at CERN. First, we outline motivations and requirements and then we focus on test strategy, equipment and procedures. Our goal is to express the magnetic field of the dipole and of its associated correctors w.r.t. the reference beam line, not accessible during cryogenic tests. To do so, we use traveling harmonic coil probes ("moles") that allow simultaneous measurement of the field and of the coil position. A laser tracker is used to relate these measurements to fiducials. In the dipole, the axis of the Quadrupole Configured Dipole (QCD) is used as an intermediate reference for the transfer. We provide details on the devices used for measurements in warm and cold conditions, some results from prototypes and pre-series dipoles and an assessment of the precision expected for the series tests

    Focusing Strength Measurements of the Main Quadrupoles for the LHC

    Get PDF
    More than 1100 quadrupole magnets of different types are needed for the Large Hadron Collider (LHC) which is in the construction stage at CERN. The most challenging parameter to measure on these quadrupoles is the integrated gradient (Gdl). An absolute accuracy of 0.1% is needed to control the beta beating. In this paper we briefly describe the whole set of equipment used for Gdl measurements: Automated Scanner system, Single Stretched Wire system and Twin Coils system, concentrating mostly on their absolute accuracies. Most of the possible inherent effects that can introduce systematic errors are discussed along with their preventive methods. In the frame of this qualification some of the magnets were tested with two systems. The results of the intersystem cross-calibrations are presented. In addition, the qualification of the measurement system used at the magnet manufacturer's is based on results of more than 40 quadrupole assemblies tested in cold conditions at CERN and in warm conditions at the vendor site

    Geometric and Magnetic Axes of the LHC Dipole

    Get PDF
    The 15-m long superconducting dipoles of the Large Hadron Collider (LHC) with two-in-one design are curved by about 5 mrad to follow the beam trajectory. They are supported on three cold feet to minimise the vertical sagitta induced by their 35 tonnes weight. The cold masses contain at both ends local multipolar correctors to compensate for the detrimental effect of persistent current during injection. We discuss how we measure and control the geometrical shape of the cold mass and the alignment of the associated correctors and how we identify the magnetic axis of the field-shape harmonics with respect to the expected beam reference orbit. We present results relative to prototype dipoles obtained both at room temperature and in operational conditions at 1.9 K

    A Mole for Warm Magnetic and Optical Measurements of LHC Dipoles

    Get PDF
    A new rotating coil probe (a mole) has been developed for the simultaneous measurement of the magnetic field and magnetic axis of warm superconducting LHC dipoles and associated corrector windings. The mole houses a radial rotating coil and travels inside the magnet aperture by means of an externally driven two-way traction belt. The coil is rotated by an on-board piezo motor, being tested in view of future devices for cold measurements as the only type of motor compatible with strong magnetic fields. A virtual light spot is generated in the coil center by a LED source. The position of this light spot is measured from the outside by a system including a telescope, a CCD camera and a DSP. Jigs on reference granite tables are used to transfer the optical measurements to the magnet fiducials. We describe here the main characteristics and performance of the mol

    New Exclusion Limits for the Search of Scalar and Pseudoscalar Axion-Like Particles from "Light Shining Through a Wall"

    Full text link
    Physics beyond the Standard Model predicts the possible existence of new particles that can be searched at the low energy frontier in the sub-eV range. The OSQAR photon regeneration experiment looks for "Light Shining through a Wall" from the quantum oscillation of optical photons into "Weakly Interacting Sub-eV Particles", such as axion or Axion-Like Particles (ALPs), in a 9 T transverse magnetic field over the unprecedented length of 2×14.32 \times 14.3 m. In 2014, this experiment has been run with an outstanding sensitivity, using an 18.5 W continuous wave laser emitting in the green at the single wavelength of 532 nm. No regenerated photons have been detected after the wall, pushing the limits for the existence of axions and ALPs down to an unprecedented level for such a type of laboratory experiment. The di-photon couplings of possible pseudo-scalar and scalar ALPs can be constrained in the nearly massless limit to be less than 3.5⋅10−83.5\cdot 10^{-8} GeV−1^{-1} and 3.2⋅10−83.2\cdot 10^{-8} GeV−1^{-1}, respectively, at 95% Confidence Level.Comment: 6 pages, 6 figure

    Main Field Tracking Measurement in the LHC Superconducting Dipole and Quadrupole Magnets

    Get PDF
    One of the most stringent requirements during the energy ramp of the Large Hadron Collider (LHC) is to have a constant ratio between dipole-quadrupole and dipole-dipole field so as to control the variation of the betatron tune and of the beam orbit throughout the acceleration phase, hence avoiding particle loss. To achieve the nominal performance of the LHC, a maximum variation of ±0.003 tune units can be tolerated. For the commissioning with low intensity beams, acceptable bounds are up to 30 times higher. For the quadrupole-dipole integrated field ratio, the above requirements translate in the tight windows of 6 ppm and 180 ppm, while for dipole differences between sectors the acceptable error is of the order of 10^-4. Measurement and control at this level are challenging. For this reason we have launched a dedicated measurement R&D to demonstrate that these ratios can be measured and controlled within the limits for machine operation. In this paper we present the techniques developed to power the magnets during the current ramps, the instrumentation and data acquisition setup used to perform the tracking experiments, the calibration procedure and the data reduction employed

    Twin Rotating Coils for Cold Magnetic Measurements of 15 m Long LHC Dipoles

    Get PDF
    We describe here a new harmonic coil system for the field measurement of the superconducting, twin aperture LHC dipoles and the associated corrector magnets. Besides field measurements the system can be used as an antenna to localize the quench origin. The main component is a 16 m long rotating shaft, made up of 13 ceramic segments, each carrying two tangential coils plus a central radial coil, all working in parallel. The segments are connected with flexible Ti-alloy bellows, allowing the piecewise straight shaft to follow the curvature of the dipole while maintaining high torsional rigidity. At each interconnection the structure is supported by rollers and ball bearings, necessary for the axial movement for installation and for the rotation of the coil during measurement. Two such shafts are simultaneously driven by a twin-rotating unit, thus measuring both apertures of a dipole at the same time. This arrangement allows very short measurement times (typically 10 s) and is essential to perform cold magnetic measurements of all dipoles. The coil surface and direction are calibrated using a reference dipole. In this paper we describe the twin rotating coil system and its calibration facility, and we give the typical resolution and accuracy achieved with the first commissioned unit

    A Demonstration Experiment for the Forecast of Magnetic Field and Field Errors in the Large Hadron Collider

    Get PDF
    In order to reduce the burden on the beam-based feedback, the Large Hadron Collider control system is equipped with the Field Description for the LHC (FiDeL) which provides a forecast of the magnetic field and the multipole field errors. FiDeL has recently been extensively tested at CERN to determine main field tracking, multipole forecasting and compensation accuracy. This paper describes the rationale behind the tests, the procedures employed to power the main magnets and their correctors, and finally, we present the results obtained. We also give an indication of the prediction accuracy that the system can deliver during the operation of the LHC and we discuss the implications that these will have on the machine performance

    Search for weakly interacting sub-eV particles with the OSQAR laser-based experiment: results and perspectives

    Get PDF
    Recent theoretical and experimental studies highlight the possibility of new fundamental particle physics beyond the Standard Model that can be probed by sub-eV energy experiments. The OSQAR photon regeneration experiment looks for "Light Shining through a Wall" (LSW) from the quantum oscillation of optical photons into "Weakly Interacting Sub-eV Particles" (WISPs), like axion or axion-like particles (ALPs), in a 9 T transverse magnetic field over the unprecedented length of 2×14.32 \times 14.3 m. No excess of events has been detected over the background. The di-photon couplings of possible new light scalar and pseudo-scalar particles can be constrained in the massless limit to be less than 8.0×10−88.0\times10^{-8} GeV−1^{-1}. These results are very close to the most stringent laboratory constraints obtained for the coupling of ALPs to two photons. Plans for further improving the sensitivity of the OSQAR experiment are presented.Comment: 7 pages, 7 figure
    • 

    corecore