A Mole for Warm Magnetic and Optical Measurements of LHC Dipoles

L. Botura, M. Buzio, G. Deferne, P. Legrand, A. Rijltart, P. Sievers
CERN, IHC Division, 121 Geneva 23, Switzerland
H. Jansen, C. Gläckner, A. Köster
Fraunhoter Institut, IPT, Aachen, Germany

Abstract

A new rotating coil probe (a mole) has been developed for the simultancoms measurement of the magnetic fied and mapnetic axis of warm superconducting $L H C$ dipoles and associated corrector windings, The mole houses a radial rotating coil and travels inside the magnet aperture by means of an externatly driven two-way traction belt. The coil is rotated by an on-board piezo motor, being tested in view of future devices for cold measurements as the only type of motor compatible with strong magnefic fields. A virtuad light spot is penerated in the coil center by a 1 IIJ source. The position of this light spot is measured from the outside by a system including a telescope, a COD comera and a DSP. Jigs on reference granite tables are used to transfor the optical measurements to the magnet fiducials. We describe here the main characteristics and performance of the mole.

I. Intronuction

The measurement of the field quality of accelerator magnets is anong the main ingredients in the construction of today's acceterators. With the advent of high lield superconducting magnets with long and narrow apertures, moasuring technologies have had to be adapled or newly developed. Pioneering efforts had been already invested since 1985 at BNL., where the "mole" technology was first developed [1]-[2] and at DESY, where it has been further pursued for the test of HERA magrets [3].

A mole consiss essentially of a slender container driven along the magnet aperture, carrying on board a rotating search coil with a notor to turn it and an angular eneoder to relate indued voltage to angular position. As for previous accelerator projects Jike the SSC [4], moles were also taken into consideration within the seenarios developed for the tests of LHC magnets [5]. Since, however, the bulk of magnet tests at 1.8 K will be made with "long coils" for the dipoles [6] and scanning machines for quadrupoles [7], moles will only be used for the series test a room temperature of dipoles and for special sample tests of dipoles at 1.8 K . The rather low magnetic field level (30 mT) used for room temperature testing of the LHC dipoles, in addition to the comfortable 50 mm aperture size, alteviate considerably the technotogical challenges. This allows us to devise user friendly and reliable equipment, essential for series warm measurements of 1200 dipoles at the factories as well as at CERN. Nevertheless, we have selected most components in view of investigating then for the use in future moles for highfield tests of magnets al superfluid Helium temperature ($1,8 \mathrm{~K}$).
As an additional feature, an optical system was added to track the lateral position of the mole during its atip along the 14.2 m

[^0]

Fig. I. Schematic mole bench layout showing a dipole under test, the nowe on the rear reference bench and the transpor systern.
long and slightly bent aperture, with the goal to measure simultancously the field and the magnetic axis as well as the physical center of the aperture along the dipole.

The only "accelerator typical" component in the mole is the search coil, which was therefore designed by CERN [8]. All oher components such as motors, level meters, encoders, motion controls etc. represent technologies which are available today in specialized industry concerned with micto mechanics, sensorics, optics and robotics. Therefore, it was decided to develop this mole together with industry, following a CERN performance specification.

This paper describes the design and commissioning of the mole and the experience gained using it for room temperature measurements of LHC dipole prototypes.

II. Description Of The System

An overall view of the mole test hench is shown in Fig. I, while Fig. 2 shows a schematic view of the mole assembly. The main comprent is the $\varnothing 41 \mathrm{~mm} \times 750 \mathrm{~mm}$ search coil (h), made of two glass-fiber reinforced epoxy half shells enclosing three 11.5 mm wide radial coils. Each coil has 400 turns and an effective surftece of approximately $3.4 \mathrm{~m}^{2}$. The coil surfaces, relevant for the measurement of the dipole strength, have been calibrated to 10^{-4} aceuracy in a reference dipole [8]. The outermost radius of the two external (measurement) coils is 19.7 mm . The central coil is used for dipole bucking. The coil is supported at either end by high quality ceranic (SiN) ball bearings (f) and is enclosed in a carbon fiber shell.

An optical system tracks the transverse position of the mole in the magnet cross section, so that the magnetic axis measured in
the reforence frame of the rotating coil can be tansterred to external tiducials. A light cmitting diode (LBD) mounted on the rotating axis of the front coil flange (i) is used to create a snaall light spot which is viewed from the front reference bench by a fixed, pre-aligned, ligh quality commercial straightness telescope. This telescope is fitted with a moturized focus, a CCD comera and a Digital Signal Processor (DSP) performing image treatment. Travelling in the bent aperture of a dipole the mole has a pich and yaw up to 2 mrad. At such angles a reference mosuted at the front of the coil has a substantial laternal error with respect to the coil center locaton. For this reason the light spot is viewed through a lens mounted in front of the LED, projecting a virtual image of the light spot into the center of the rotating coil.

In order to keep clear the line-of-sight for the optical tracking at the rront of the coil, all other components had to be concentrated on the opposite side. These components include the hollow shaft optical angle encoder (e), with 1024 counts per revolution, and a helical damping coupling (d), made of polyimide and supporting the nexibte signal cable spiral energing from the coil. The signal cable is a bunde of 7 microcoaxial cables, free to wind and unwind as the coil executes a cycle of three forward and backward rotations. Fach measurement is taken as the average of a complete forward and backward coil revolution. In addition to this measurement turn, one complete revolution is used for the acceleration and deceleration of the coil.
An ultrasonic travelting-wave piczo-motor (b) with a 3:1 plastic reduction gear (c) is mounted downstrenm of the helical coupling. Such motors appeared only recently on the market, and are particularly suited for our application as they have compact size (approx. $\varnothing 30 \mathrm{~mm} \times 20 \mathrm{~mm}$), intrinsic slow rotation (2 Hz) and the capability to work in strong magnetic fields. Sudies are still in progress to improve the control of the velocity which by now is constant within $\pm 8 \%$, marginally adequate for magnetic measurements. If necessary the piczomotor could be replaced by a standard DC motor-reductor unil for low lied measurements. We have made use of the through axis in the motor to install downstream an auxiliary poteatiometer (a), necessary for the control and limitation of the rotation.

Each block of components in the mole is contained in a separate non-magnetic stainless steel housing. The housings are mechanicatly fitted to each other alter interconnecting the electrical cables. This assembly forms an autonomous drive unit. The coil is mounted on the drive unit and inserted thereafier into a high strength carbon fiber tube that completes the assembly of the mole into a monolithic container. The support in the magnet
aperture is provided at either end by triple rollets that permit a smooth longitudinal movement (see Fig. 3). One of the three rollers in each unit is spring loaded in order to atecommodate the ± 0.4 nun toletance along the magnet aperture pipe. A triple roller unit forms part of a ring sliding around the mole container, allowing relative rotation between these two components. This mechanism is necessary to orient the mole into a proper working position. Travelling in the magret the mole changes its orientution by up to a few degrees per meter of travel, depending on the mechanical precision of the rollers and the gliality of the imer surface of the magnet aperture. This rotation must be comected, to avoid twisting of the traction bolt and of the signal cable and to get as close as possible to the zew of the mole level meter where the accuracy of the reading is the highest.

The correction of the orientation is done by means of an active on-board auto-leveling system, consisting of a coarse ($\pm 10^{\circ}$) and a fine ($\pm 2.5^{\circ}$) level meter piloting a motor. The motor engages via a pinion system into the rear triple roller support, thus changing the orientation of the mole unit relative to this roller support. Since friction blocks the latter agains arimuthal rotation in the aperture pipe of the magnet, it is actuatly the mole which orients itself into the desired position. The coarse level meter is used to level the mole to within a few firad. The line level measures the linal orientation with a precision of ± 0.02 mrad. A referchee surface on the outside of the mole container can he used to verify on the reference benches the orientation of the mole against the level meters.

The motorized drive mechanism lor fongitudinal displacement and positioning of the mole is shown in Fig. 4, together with one of the two granite tables placed at either end of the test bench and used to establish the necessary reference positions. The suppork installed on each table, made of two hall shells, serve primarily for case of mastaltation and to "park" the mole ousside of the magnet. They have the same inner diameter as the magnet aperture, thus ensuring smooth movements into and out of the magnet. The supports are duplicated for each aperture of the magnet, and the mole bas to be moved manually from one aperture to the other.

A non-magnelic Inconel transport tape is attached at either end of the mole (see detail in Fig. 3). The tape forms a loop closed through the other magnel aperture. A pre-tension of about 150 N is applied to ensure precise and reproducible axial positioning. The longitudinat position is monitored continuously vian external angular eneoder, driven by the transport tape, and is checked at reference positions at the end of each trip. These references are materiaized by light jeflection detectors on the half shells. The longitudinal position has a reproducibility beter than 0.2 mm at the references, while the overall precision of the

Fig. 2. Schematic drawing of main mole components: (a) nultiturn potentioneter, (b) prezo-motor, (c) 3: f relucion, (d) helical coupling, (e) encoder, (1) ceramic ball benving, (g) Ti coupling, (h) coil, (i) LED and optics. See text for a detailed description.
longitudina positionitg over the whole magnet length, important for integral fied measurment, is beter than 0.5 mm , i.c. less than 10^{-4}.

One single multi-wire signal cable collecting all elcertical connections, energes at the rear of the mole (see Fig. 3) and is pulled together with it back and forth along the magnel. The exeess of cable is stored via a motorized drive in a comaner placed in front of the rear bench (see Fig. 4).
The reference benches, at the two magnet conds, provide the mean to transfer the optical mensurements inside the magnet to the outside fiditials of the magnet. 'This is clone in subsequent steps. In the first step the telescope-CCD unit is used to measure the position of the light-spot with the mole placed into precise and ceproducible seference supports on the granite base of ench reference bench. The transfer from the granite base to auxiliary fiduciads, in line of sight with the outside magnet fiducials, is, established by themmally stable jigs, made of carbon teinforced structures, firmly mounted onts the granite base and carefully surveyed. The nuxiliary fiducials are finally related to the outside magnet fiducials by standard surveying teclmiques.

III. System Performances

A. Field Measurements

The main task to be accomplished by the mole is the measurement of the absolute value and ditection of the dipole field, as well as the higher order multipoles along both apertures of a magnet. These are obtained applying standard teelmiques for search cois. The fiedd integral in the magnet, relevant for the accelerator performance, is obtained scanning the whole aperture in steps equal to the coil lengh. As an example we show in Fig. 5 results of the measurements of the $10-\mathrm{m}$ long prototype dipole MBLIN1. We have reported there the measured dipole field, its direction and the modulus of the higher order harmonics relative to the dipole liedel and seated by a factor 10^{4} (i.e. in units). The compensation of the main dipole component necessary for an aceurate measurement of the harmonics is performed analogically, subtracting the signal of the central coil from the reading of the measurement coil. The compensation ratio ohbained is about 2000, averaged between forward and backward rotation. We have achieved a measurenent

Fig. 3. Back end of the note showing the signal and control eable, the contector and a triple rotler unit.
reproducibility of the order of $2 \cdot 10^{\text {th }}$ relative to the main dipole component up to order 15 .

The measured dipole direction is shown in delail in Fig. 6, and compared to iudependent measurements taken using different equipoment [7]. The angle is corrected atier the measumenen for the local tesiduai vertical tilt of the mole and for the systematic offset between the on-horad level-meter and the encoder "zero" pulse. The latier is a constant that we have obtained from a calibration measurement in a reference dipole with a well-known field direction, observing the phase of the main harmonic relative to the orientation of the mole. The estimated precision of the angle measurement is abou! 0.2 mirad.

The location of the magnelic axis relative to the rotation axis of the search coil is computed from the measured harmonics. For the LHC dipoles we have found that a good working definition of the magnetic axis is given by the location in the magnet cross section where the non-allowed multipole of order 10 vanishes. This corresponds to the assumption that the component of order 10 is entirely caused by feed down from the higher order hammonics. In fact the LFIC dipoles have a strong intrinsic geometric multipole of order 11, thus justrying the assumption. The coil rotation axis is measured optically and transferted to the magnet fiducial reference frame (see next section). It this way, all parameters relovant for the measurenent of the magnetic fields in the L.HC dipoles are achicved simulancously by a sibgle passage of the mole, which is vilal for the efficient and speedy acceptance procedure of magnets during series production. A single, local magnetic measurement takes in fact only a few scoonds. At presentevery measurement is repeated at least 10 times, in order to build ups statistical confidence. The scan of both apertures of a whole magnet can be accomplished in about one hour,

B. Oprical Measurements

The transverse position of the light spot is obtained crilculating the center of gravity of the image on the CCD. A given number of takes (iypically 30) are averaged to reduce ite influence of ait turbulence. A prelonded soltware catibration

Fig. 4. Rear reference bunch with granite table, supporting hali-shedls, reference jig. transport system and cable container.
map is used to compensate for longiludinal distance eflects. 'The measuring range of this system is +2 mom vertically and ± 7 inm horizontaily (as required to cover the 9 min sagita of a curved, 15-m long dipole magnet aperture). The procision after calibration is better tham $60 \mu \mathrm{~m}$ over a 20 m range, well exceeding specifications ($100 \mathrm{\mu m}$).

In Fig. 7 we show an example ol the measured trajectory of the coil center in the aperture of the MBLINI dipole. The mole follows the curved aperture pipe, with a sagitta in x (horizontal) direction of approximately 8 mm . Our results are compared to an independent measurement taken with a combined lasev/PSD system [9]. The average diflerence between the two measurements is $74 \mu \mathrm{~m}$. It should be noted that geometrical errors of a lew Hm in the optical unit assentbly ean lead to a transverse displacement of the virtual spot of a few tenths of mm, the to the magnifying effect of the lems. This has been observed and corrected taking the

Fig. 5. [Fold measurement in MRLIN1 prototype dipole, cach bar representing a different longitudinal position (B_{1} is in T, the angle x is in mad, the harmonics ate in units (e) 17 mm).

tig. G. Comparison of measured lield angle with the mole and with an atumated scanning machime [7] in the ME[IN] LHC protorype dipole.

Fig. 7. Example of optical measurement: beam pipe curvature in the nislplane of the MBLINI dipole prototype, compared to results fromi [9].
a verage of two measurements al coil orientations 180° apart.
The Joule power heating the magnel during magnetic measurements can impair severely this excellent performance. Thermal gradients in the aperture deviate the optical path up to a lew tenths of a mon. Several solutions are being considered, incluting a small controlled gas flow along the magnet's aperture pipe, naking optical measurement runs before powering the magnet and, most promisingly, the adoption of a very low power quadrupole conliguration in the dipole for magnetic axis measurement.

IV, Conclusions And Outlook

Our initial experience with the mole shows that this probe is able to carry out maguetic and geometrical measurentents with a precision egual to or exceeding the specifications. Reliability and user-friendliness, so fat, appear to bo compatible with the severe demands of the serics L.HC dipoles test compaign.

Much of the mole's complexity stems from the requirement to moasure the magnetic axis relative to the magnet fiducials. In fact, if the goal were simply to measure the axis position relative to the cold bore, the system of reference jigs and surfaces, as well as the auxiliary systom to measure their aligmment with respect to the magnet fiducials could be dropped. Moreover. were the axis not required at all, the optical measurement components could be eliminated altogether and both the transport mechanism and the internal layout could be simplified.

The next major target now is to supply a mole for measurements of dipoles (and, possibly, of LHC quadrupoles) at liquid helium temperature, one of which has already been ordered. This probe represents a more diflicult challenge as it must work, among other things, under vacuum (to avoid thermal gradient effects on the optical path) and within a more restrieted volume ($\varnothing 40$ mm anticryostal). 'Fhis mole will only be used for spot cheeks including the detection of the magnetic axis at high ficld.

REFFRENCES

[1] H. Hemera, G. Ganctis, R. Hogue, E Rogers, P. Wandenc, E. Willen, "Measurement of the magrenic tield cocficiems of particle acculcator magnets', PAC 89, Chicurgo, IL, USA.
[2] E. Willen, P. Dahl and J. Hemera, "Superenchucting magnets", SLAC Sunmer School 1985, AlP Couf. PToc. 153, Vol. 2
[3] R Meinke, 'Methods for profuction measuremeats of supereonducting mbegnets". Internal Report DESY HERA 90-06, Apii] 1990.
[4] R. Thomas ot al., "Performance of lield neasuritg probes for SSC magnets," pp. 71S-718, Supercollider 5, ed. P. Hale, Pemme Pross, Now York, 1994.
[S] L. Wakkiers ef in., "Towands series measurements of the I.HC superconducling dipole magnets", Proe. of 1997 Part. Ace. Cont, Vanconver, pju. 3377-3379, 1997.
[6] J. Billan, L. Boturact al, "Twin rotating coils for coid mapmetic mensurements of 15 ni long LHC dipoles", $16^{\text {di }}$ International Conference on Magnet Technology (MT16) Ponte Vedra Beach, EL, USA, 26 Sept -2 Oct., 1999.
[7] J. Billan, J. Buckley, R, Saluan, P. Sievers, L. Walckiens, "Design and test of the benches for the magnetic mensuremont of the LHIC dipoles", IEEE Trans. Mag., vol. 30, pp, 2658-2661, 159 4.
[8] J. Bitlan, CERN, Gency, Switar]and, privak communication, 1998.
[9] D. Missiaen, CERN, Geneva, Switzerlind, private communication, 1999.

[^0]: Received September 27, 1999.

