7 research outputs found

    Carboxymethylcellulose reinforced starch films and rapid detection of spoiled beverages

    Get PDF
    The integrity of the packaging of a liquid foodstuff makes it difficult to detect spoilage. Therefore, it is important to develop a sensitive, fast and real-time material for liquid food detection. CMC, as lignocellulose derivatives and starch are widely used in the food industry. In this study, starch films with pH-responsive properties are successfully prepared from full-component starch and corn amylopectin (CA) by adding CMC. The effects of CMC on the mechanical properties, morphology characteristics, physical and chemical structures, stability and pH responsiveness of the starch films are analyzed. The starch/CMC-1.0 g composite films display good electrical conductivity and reduce the resistance of the composite film by two orders of magnitude. The composite films have pH response ability; in the simulation of orange juice spoilage experiment, the CA/CMC composite film has a more sensitive current response and was more suitable for the application to liquid food quality detection. Additionally, the starch/CMC composite films have potential applications for rapid detection and real-time monitoring of the safety of liquid food

    Effective and eco-friendly safe self-antimildew strategy to simultaneously improve the water resistance and bonding strength of starch-based adhesive

    No full text
    Starch adhesive, as a sustainable biomass-based adhesive, could be used to solve environmental problems from petroleum-derived adhesive. But its application is hindered by poor water resistance, mildew resistance, and storage stability. Here, a fully bio-based citric acid-starch adhesive (CASt) with high properties was successfully introduced by a simple method. Liquid chromatography/mass spectrometry (LC-MS), and Fourier Transform Infrared spectroscopy (FT-IR) determined that esterification of citric acid (CA) and starch (St) occurred to form a stable three-dimensional crosslinking structure, which strengthened water resistance and bonding strength of the starch adhesive. Compared with native starch (100 %), the soluble content of cured CASt was 1–16 %. CASt adhesive has well storage stability and high mildew resistance. Even after being stored for 5 months, the CASt-1 adhesive (mass ratio of CA/St = 1:1, and reaction time = 1 h) still have good liquidity. And its hot water strength (1.05 ± 0.22 MPa) also satisfied the standard requirements (≄0.7 MPa). The exhibited CASt adhesive is eco-friendly with components from plant resources, which performed as a bright alternative that can substitute petroleum-based adhesives in the artificial board industry

    Formation and Band Gap Tuning Mechanism of Multicolor Emissive Carbon Dots from m‐Hydroxybenzaldehyde

    No full text
    Abstract Reported in 2004, carbon dots (CDs) have been widely used in various fields due to their excellent optical properties. However, the mechanism of their fluorescence modulation is still a controversial issue, which also seriously affects the further development of carbon dots. In this paper, m‐hydroxybenzaldehyde is used as a raw material to obtain multicolor luminescent CDs by pyrolysis under different reaction conditions, thereby revealing the forbidden band tuning and formation mechanism of CDs. Different acid–base conditions lead to different reaction paths of the precursors, forming molecular fluorophores with different conjugated structures, which aggregate to eventually form CDs and further enhance the photoluminescence of the system by inhibiting the movement of the fluorescent centers

    Preparation of High-Toughness Lignin Phenolic Resin Biomaterials Based via Polybutylene Succinate Molecular Intercalation

    No full text
    Lignin has many potential applications and is a biopolymer with a three-dimensional network structure. It is composed of three phenylpropane units, p-hydroxyphenyl, guaiacyl, and syringyl, connected by ether bonds and carbon–carbon bonds, and it contains a large number of phenol or aldehyde structural units, resulting in complex lignin structures. This limits the application of lignin. To expand the application range of lignin, we prepared lignin thermoplastic phenolic resins (LPRs) by using lignin instead of phenol; these LPRs had molecular weights of up to 1917 g/mol, a molecular weight distribution of 1.451, and an O/P value of up to 2.73. Due to the complex structure of the lignin, the synthetic lignin thermoplastic phenolic resins were not very tough, which greatly affected the performance of the material. If the lignin phenolic resins were toughened, their application range would be substantially expanded. Polybutylene succinate (PBS) has excellent processability and excellent mechanical properties. The toughening effects of different PBS contents in the LPRs were investigated. PBS was found to be compatible with the LPRs, and the flexible chain segments of the small PBS molecules were embedded in the molecular chain segments of the LPRs, thus reducing the crystallinities of the LPRs. The good compatibility between the two materials promoted hydrogen bond formation between the PBS and LPRs. Rheological data showed good interfacial bonding between the materials, and the modulus of the high-melting PBS made the LPRs more damage resistant. When PBS was added at 30%, the tensile strength of the LPRs was increased by 2.8 times to 1.65 MPa, and the elongation at break increased by 31 times to 93%. This work demonstrates the potential of lignin thermoplastic phenolic resins for industrial applications and provides novel concepts for toughening biobased aromatic resins with PBS

    Ion-Modified Starch Film Enables Rapid Detection of Spoiled Fruit Juices

    No full text
    Juice, as a liquid foodstuff, is subject to spoilage and damage due to complications during transport and storage. The appearance of intact outer packaging often makes spoilage and damage difficult to detect. Therefore, it of particular importance to develop a fast, real-time material to evaluate liquid foodstuffs. In this paper, starch films with pH response characteristics are successfully prepared by inorganic ion modification by utilizing whole starch and amylopectin as raw materials. The mechanical properties, stability properties, hydrophilic properties and pH electrical signal response indices of the films are analyzed and measured. The films exhibit good electrical conductivity values with 1.0 mL of ion addition (10 mmol/L), causing the composite film to respond sensitively to solutions with varying pH values. In the test of spoiled orange juice, the full-component corn starch (CS) film has more sensitive resistance and current responses, which is more conducive for applications in the quality monitoring of juice. The results indicate that modified starch films can potentially be applied in the real-time monitoring of the safety of liquid foodstuffs

    Application of Multicolor Fluorescent Carbon Dots Based on Tea Polyphenols in a White Light-Emitting Diode and Room-Temperature Phosphorescence

    No full text
    Carbon dots (CDs) are new carbon nanomaterials, among which those prepared from biomass are popular due to their excellent optical properties and environmental friendliness. As representative natural phenolic compounds, tea polyphenols are ideal precursors with fluorescent aromatic rings and phenolic hydroxyl structures. Usually, polyphenolic precursors can only be used to produce blue or green fluorescent CDs, and fluorescence in long wavelength domains, such as orange or red, cannot be achieved. Herein, the high reactivity of the phenolic hydroxyl groups in tea polyphenols with o-phthalaldehyde was exploited to modulate the pH during the carbonation process, which led to redshifts of the fluorescence wavelengths. Different pH values during the reaction caused the precursors to take different reaction paths and form fluorescent groups exhibiting different conjugated structures, resulting in carbon dots providing different fluorescent colors. Finally, by utilizing the in situ hydrolysis of ethyl orthosilicate, the tea polyphenol-based carbon dots were embedded into a silica matrix, inducing phosphorescence of the carbon dots. This study provides a new approach for green preparation and application of natural polyphenolic CDs
    corecore