3 research outputs found

    Natural pesticides for pest control in agricultural crops: an alternative and eco-friendly method

    Get PDF
    Biological pesticides are pesticides derived from natural materials such as bacteria, plants, and minerals that are applied to crops to kill pests. Biopesticides are targeted, inexpensive, eco-friendly, sustainable, leave no trace, and are not associated with the production of greenhouse gases. It contributes significantly to the agricultural bio-economy's sustainability. The advantages to the ecosystem provided by many significant biological resources justify the incorporation of biopesticides in Integrated Pest Management (IPM) programs. Through advancements in research and development, the use of biopesticides has significantly reduced environmental contamination. The development of biopesticides promotes agricultural modernization and will surely result in a gradual phase-out of chemical pesticides. Although synthetic pesticides have positive effects on crop yield and productivity, they also have some negative impacts on soil biodiversity, animals, aquatic life, and humans. In general, synthetic pesticides make the soil brittle, decrease soil respiration, and reduce the activity of some soil microorganisms, such as earthworms. Pesticide buildup in bodies of water can spread from aquatic life to animals including people, as their biomagnification can cause fatal diseases like cancer, kidney disease, rashes on the skin, diabetes, etc. Biopesticides, on the other hand, have surfaced and have proven to be quite beneficial in the management of pests and are safe for the environment and hence have emerged as very useful in the control of pests with a lot of merits.  The present review provides a broad perspective on the different kinds of pesticides. We analyzed suitable and environmentally friendly ways to improve the acceptance and industrial application of microbial herbicides, phytopesticides, and nano biopesticides for plant nutrition, crop protection/yield, animal/human health promotion, as well as their potential integration into the integrated pest management system

    Plant growth promotion and antifungal activities of the mango phyllosphere bacterial consortium for the management of Fusarium wilt disease in pea (Pisum sativum L.)

    Get PDF
    Root rot caused by the pathogen Fusarium oxysporum is the number one cause of pea plant (P. sativum L.) death. There are many potential advantages to using rhizobacteria, endophytic bacteria and phyllospheric bacteria for managing plant diseases and promoting plant growth. This study investigated the potentiality of consortium species of bacteria to suppress root rot disease and their ability to promote the growth of pea plants compared with their individual and control plants. A total of 55 phyllospheric bacteria were isolated from mango flower and Bacillus sp. LBF- 02, Bacillus sp. LBF- 03 and Bacillus sp. LBF- 05 showed the most potent antimicrobial activity against root rot pathogens in a dual culture assay. Identification of phyllobacterial strain LBF- 01, LBF- 03 and LBF-05 were done by 16S rDNA sequence analysis using 704f forward primer (50-AGATTTTCCGACGGCAGGTT-30) and 907r reverse primer (50-CCGTCAATTCMTTTRAGTTT-30) with the PCR conditions. Their ability to solubilize phosphate, produce ammonia, siderophore and indole acetic acid, as well as produce extracellular enzymes in vitro was excellent. The results of a greenhouse study found that pea seed treated with consortium isolate significantly increased high germination rates and vigour indexes, as well as shoot and root length, fresh and dry weights, as compared with seed treated with single isolate and control. The defense enzyme activities in consortium treated pots were higher than those in individual and control pots. The plants treated with consortium exhibited higher levels of chlorophyll and carotenoids content in their leaves compared to the untreated control and single treated plants. A significant variation in the chemical profile of pea plants was found (F7,16 ? 2.598; P ? 0.048) resulting from different treatments (T1-T8). After evaluating a variety of growth and microbiological parameters, it was concluded that inoculation with the microbial consortium contributed to raising healthy and vigorously growing pea seedlings in greenhouse conditions, which is applicable in the field in future for sustainable farming

    Pharmacological Treasures of the Moraceae Family: Bioactive Compounds and Therapeutic Potential

    No full text
    The Moraceae family, comprising 50 genera and around 1,400 species thriving in tropical and subtropical regions globally, holds profound botanical significance. Esteemed for its medicinal attributes, this review presents a comprehensive synthesis of the family's bioactive constituents, traditional applications, and pharmaceutical potential. Within the phytochemical realm, Moraceae plants offer a rich array of active agents, including flavonoids, alkaloids, glycosides, saponins, tannins, phytoalexins (such as chalcomoracin), anthocyanins, and glycoproteins, with promising pharmacological potential. Pharmacologically, the review reveals a wide spectrum of effects, including antioxidant, hypoglycemic, anticancer, hepatoprotective, anthelmintic, antihypertensive, and antimicrobial properties. Drawing from an exhaustive literature analysis and in-depth study of Moraceae's bioactivity and phytochemical composition, along with exploration of its traditional uses and pharmacological effects, this discourse aims to guide future researchers. With herbal products' substantial potential, this review serves as a valuable resource for advancing botanical medicine research
    corecore