34 research outputs found

    Asymmetric triplex metallohelices with high and selective activity against cancer cells

    Get PDF
    Small cationic amphiphilic α-helical peptides are emerging as agents for the treatment of cancer and infection, but they are costly and display unfavourable pharmacokinetics. Helical coordination complexes may offer a three-dimensional scaffold for the synthesis of mimetic architectures. However, the high symmetry and modest functionality of current systems offer little scope to tailor the structure to interact with specific biomolecular targets, or to create libraries for phenotypic screens. Here, we report the highly stereoselective asymmetric self-assembly of very stable, functionalized metallohelices. Their anti-parallel head-to-head-to-tail ‘triplex’ strand arrangement creates an amphipathic functional topology akin to that of the active sub-units of, for example, host-defence peptides and ​p53. The metallohelices display high, structure-dependent toxicity to the human colon carcinoma cell-line HCT116 ​p53++, causing dramatic changes in the cell cycle without DNA damage. They have lower toxicity to human breast adenocarcinoma cells (MDA-MB-468) and, most remarkably, they show no significant toxicity to the bacteria methicillin-resistant Staphylococcus aureus and Escherichia coli. At a glanc

    Approaches in biotechnological applications of natural polymers

    Get PDF
    Natural polymers, such as gums and mucilage, are biocompatible, cheap, easily available and non-toxic materials of native origin. These polymers are increasingly preferred over synthetic materials for industrial applications due to their intrinsic properties, as well as they are considered alternative sources of raw materials since they present characteristics of sustainability, biodegradability and biosafety. As definition, gums and mucilages are polysaccharides or complex carbohydrates consisting of one or more monosaccharides or their derivatives linked in bewildering variety of linkages and structures. Natural gums are considered polysaccharides naturally occurring in varieties of plant seeds and exudates, tree or shrub exudates, seaweed extracts, fungi, bacteria, and animal sources. Water-soluble gums, also known as hydrocolloids, are considered exudates and are pathological products; therefore, they do not form a part of cell wall. On the other hand, mucilages are part of cell and physiological products. It is important to highlight that gums represent the largest amounts of polymer materials derived from plants. Gums have enormously large and broad applications in both food and non-food industries, being commonly used as thickening, binding, emulsifying, suspending, stabilizing agents and matrices for drug release in pharmaceutical and cosmetic industries. In the food industry, their gelling properties and the ability to mold edible films and coatings are extensively studied. The use of gums depends on the intrinsic properties that they provide, often at costs below those of synthetic polymers. For upgrading the value of gums, they are being processed into various forms, including the most recent nanomaterials, for various biotechnological applications. Thus, the main natural polymers including galactomannans, cellulose, chitin, agar, carrageenan, alginate, cashew gum, pectin and starch, in addition to the current researches about them are reviewed in this article.. }To the Conselho Nacional de Desenvolvimento Cientfíico e Tecnológico (CNPq) for fellowships (LCBBC and MGCC) and the Coordenação de Aperfeiçoamento de Pessoal de Nvíel Superior (CAPES) (PBSA). This study was supported by the Portuguese Foundation for Science and Technology (FCT) under the scope of the strategic funding of UID/BIO/04469/2013 unit, the Project RECI/BBB-EBI/0179/2012 (FCOMP-01-0124-FEDER-027462) and COMPETE 2020 (POCI-01-0145-FEDER-006684) (JAT)

    A density functional study of oxygen atom transfer reactions between biological oxygen atom donors and molybdenum(IV) bis(dithiolene) complexes

    No full text
    Density functional calculations have been used to investigate oxygen atom transfer reactions from the biological oxygen atom donors trimethylamine N-oxide (Me3NO) and dimethyl sulfoxide (DMSO) to the molybdenum(IV) complexes [MoO(mnt)(2)](2-) and [Mo(OCH3)(mnt)(2)](-) (mnt = maleonitrile-1,2-dithiolate), which may serve as models for mononuclear molybdenum enzymes of the DMSO reductase family. The reaction between [MoO(mnt)(2)](2-) and trimethylamine N-oxide was found to have an activation energy of 72 kJ/mol and proceed via a transition state (TS) with distorted octahedral geometry, where the MOO is bound through the oxygen to the molybdenum atom and the N-O bond is considerably weakened. The computational modeling of the reactions between dimethyl sulfoxide (DMSO) and [MoO(mnt)(2)](2-) or [Mo(OCH3)(mnt)(2)](-) indicated that the former is energetically unfavorable while the latter was found to be favorable. The addition of a methyl group to [MoO(mnt)(2)](2-) to form the corresponding des-oxo complex not only lowers the relative energy of the products but also lowers the activation energy. In addition, the reaction with [Mo(OCH3)(mnt)(2)](-) proceeds via a TS with trigonal prismatic geometry instead of the distorted octahedral TS geometry modeled for the reaction between [MoO(mnt)(2)](2-) and Me3NO

    C-H activation induced by water. Monocyclometalated to dicyclometalated: C boolean AND N boolean AND C tridentate platinum complexes

    No full text
    Metalation of 2,6-diphenylpyridine (1) by potassium tetrachloroplatinate in acetic acid gives a monocyclometalated chloride-bridged dimer 4. This dimer is split with CO to give a kinetic product 9t with the incoming CO trans to the orthometalated carbon. The kinetic product of cleavage is shown to be 16 kJ mol-1 higher in energy than the thermodynamic product 9c, which has the CO trans to the pyridine nitrogen. The isomerization of 9t to 9c is shown not to take place via an associative mechanism and, with analogue 11, is effectively suppressed when excess chloride is added, implying that it takes place via a chloride dissociation. The monocyclometalated 9 undergoes a second cyclometalation to give the C∧N∧C dicyclometalated complex 15 in high yield. This second cyclometalation is brought about by the simple expedient of adding water to the monocyclometalated precursor. The addition of water is rationalized on the basis of needing to ionize the HCl byproduct of the reaction. Using a substituted pyridine (5) analogous chemistry is observed. Single-crystal X-ray structures of one of the intermediates (6) and one of the final products (15) have been solved. Density functional theory calculations are used to rationalize the isomerizations of the monocyclometalated intermediates and the need to ionize HCl in the second cyclometalation
    corecore