5 research outputs found

    FoodNet: Recognizing Foods Using Ensemble of Deep Networks

    Full text link
    In this work we propose a methodology for an automatic food classification system which recognizes the contents of the meal from the images of the food. We developed a multi-layered deep convolutional neural network (CNN) architecture that takes advantages of the features from other deep networks and improves the efficiency. Numerous classical handcrafted features and approaches are explored, among which CNNs are chosen as the best performing features. Networks are trained and fine-tuned using preprocessed images and the filter outputs are fused to achieve higher accuracy. Experimental results on the largest real-world food recognition database ETH Food-101 and newly contributed Indian food image database demonstrate the effectiveness of the proposed methodology as compared to many other benchmark deep learned CNN frameworks.Comment: 5 pages, 3 figures, 3 tables, IEEE Signal Processing Letter

    GEOS S2S-2_1: The GMAO High Resolution Seasonal Prediction System

    Get PDF
    A new version of the coupled modeling and analysis system used to produce near real time subseasonal to seasonal forecasts was recently released by the NASA/Goddard Global Modeling and Assimilation Office. The new version runs at higher atmospheric resolution than the previous, (approximately 1/2 degree globally), contains a substantially improved model description of the cryosphere, and includes additional interactive earth system model components (aerosol model). In addition, the Ocean data assimilation system has been replaced with a Local Ensemble Transform Kalman Filter, and now includes the assimilation of along-track sea surface height. Here will describe the new system, along with the plans for the future (GEOS S2S-3_0) which will include a higher resolution ocean model and more interactive earth system model components (interactive vegetation, biomass burning from fires). We will also present results from a series of retrospective seasonal forecasts. Results show significant improvements in surface temperatures over much of the northern hemisphere and a much improved prediction of sea ice extent in both hemispheres. Analysis of the ensemble spread shows improvements relative to the previous system, including generally better reliability. The precipitation forecast skill is comparable to previous S2S systems, and the only tradeoff is an increased "double ITCZ", which is expected as we go to higher atmospheric resolution

    NASA GMAO GEOS S2S Prediction System: Metrics, Post-Processing and Products

    Get PDF
    In this presentation we present an overview of the GMAO Sub-Seasonal and Seasonal Prediction System, current users and products, and methods for validation and evaluation of the system. Methods for evaluation include baseline evaluations metrics, the ability to simulate key modes of variability, and evaluation of new development areas

    NASA GMAO S2S Prediction System Hindcast and Near-Real Time Operations Strategy

    Get PDF
    In this presentation we present an overview of the GMAO Sub-Seasonal and Seasonal Prediction System with a focus on the computing time and resources and actual time it takes to complete a full set of hindcasts. The goal is to come up with some solutions to allow us to run more ensemble members for the next version of the system which will be higher resolution and take many more resources

    FoodNet: Recognizing Foods Using Ensemble of Deep Networks

    No full text
    corecore