41 research outputs found

    Exploring distribution and genomic diversity of begomoviruses associated with yellow mosaic disease of legume crops from India, highlighting the dominance of mungbean yellow mosaic India virus

    Get PDF
    Yellow mosaic disease (YMD) caused by several begomoviruses is one of the major constraints of over a dozen leguminous crops worldwide, particularly in Asian and Southeast Asian countries. The present study aimed to investigate the distribution, diversity and prevalence of begomoviruses associated with YMD in leguminous hosts in five agro-climatic zones of India, to assess the extent of their geographical presence and develop location and crop-specific distribution maps. One hundred and seventy-four leguminous plant samples were tested from 32 locations in India to detect YMD-causing viruses. Additionally, publicly available data were incorporated into this study to provide a comprehensive overview of their distribution in India. This resulted in 581 reports on the DNA-A component representing 119 locations, which were also utilized to depict the distribution of YMD-causing viruses on a map of India. In this study, 117 full-length DNA-A and 103 DNA-B components were successfully characterized, representing the detected mungbean yellow mosaic India virus (MYMIV), mungbean yellow mosaic virus (MYMV), and horsegram yellow mosaic virus in the collected samples. Phylogenetic analysis of isolates of these species showed no differentiation based on location in India. Diversity indices revealed the abundance (55.9%) and dominance (0.56) of MYMIV across 119 locations. These findings hold significant implications for legume researchers, offering insights into disease prevalence and geographic distribution. Furthermore, the distribution of YMD-causing viruses in different agro-climatic zones will help researchers in developing zone-specific YMD-resistant cultivars of the legume crops and would facilitate effective disease management options

    Uncovering Genomic Regions Associated With 36 Agro-Morphological Traits in Indian Spring Wheat Using GWAS

    Get PDF
    Wheat genetic improvement by integration of advanced genomic technologies is one way of improving productivity. To facilitate the breeding of economically important traits in wheat, SNP loci and underlying candidate genes associated with the 36 agro-morphological traits were studied in a diverse panel of 404 genotypes. By using Breeders’ 35K Axiom array in a comprehensive genome-wide association study covering 4364.79 cM of the wheat genome and applying a compressed mixed linear model, a total of 146 SNPs (-log10P ≥ 4) were found associated with 23 traits out of 36 traits studied explaining 3.7–47.0% of phenotypic variance. To reveal this a subset of 260 genotypes was characterized phenotypically for six quantitative traits [days to heading (DTH), days to maturity (DTM), plant height (PH), spike length (SL), awn length (Awn_L), and leaf length (Leaf_L)] under five environments. Gene annotations mined ∼38 putative candidate genes which were confirmed using tissue and stage specific gene expression data from RNA Seq. We observed strong co-localized loci for four traits (glume pubescence, SL, PH, and awn color) on chromosome 1B (24.64 cM) annotated five putative candidate genes. This study led to the discovery of hitherto unreported loci for some less explored traits (such as leaf sheath wax, awn attitude, and glume pubescence) besides the refined chromosomal regions of known loci associated with the traits. This study provides valuable information of the genetic loci and their potential genes underlying the traits such as awn characters which are being considered as important contributors toward yield enhancement

    A STUDY TO ASSESS A LEVEL OF DEPRESSION AMONG CANCER PATIENT

    No full text

    Dual immunomodulatory and antileishmanial potential of TLR7/8 agonists against Leishmania donovani

    No full text
    ABSTRACT Visceral leishmaniasis (VL), caused by Leishmania donovani, is a neglected tropical disease with limited therapeutic options and increasing drug resistance. This study investigates the immunological mechanisms and antiparasitic efficacy of imidazoquinoline-based Toll-like receptor 7/8 (TLR7/8) agonists as host-directed agents in an in vitro VL model. Using RAW 264.7 macrophages and L. donovani promastigotes and amastigotes, we examined macrophage activation, nitric oxide (NO) induction, and cell cycle disruption in parasites. The lead compounds (5 and 10) significantly enhanced NO production in macrophages, both in unstimulated and LPS-stimulated conditions, indicating robust innate immune activation. Additionally, parasite-derived reactive oxygen species (ROS) levels were markedly elevated, suggesting oxidative stress as a mechanism of direct leishmanicidal action. Flow cytometric analysis revealed G0/G1 arrest in treated promastigotes, further supporting interference with parasite proliferation. Importantly, these compounds exhibited low cytotoxicity toward host cells and favorable selectivity indices. Notably, this is the first in vitro study to comprehensively demonstrate the ability of TLR7/8 agonists to exert direct parasiticidal effects along with immune modulation in the context of VL. The results underscore the potential of TLR-targeted immunomodulation to enhance host defense mechanisms against intracellular protozoan infections and contribute to the development of novel immunopharmacological interventions for VL

    Urdbean Leaf Crinkle Virus: A Mystery Waiting to Be Solved

    No full text
    Urdbean leaf crinkle disease (ULCD) affects mainly the urdbean or blackgram (Vigna mungo (L.) Hepper) causing distinct symptoms that often result in serious yield losses. It has been known to occur for more than five decades and is considered to be of viral etiology. The identity of the causal agent, often referred to as the urdbean leaf crinkle virus, is not unequivocally proved. There are few attempts to characterize the causal agent of ULCD; however, there is no unanimity in the results. Recent attempts to characterize the causal agent of ULCD using next-generation sequencing of the virome of ULCD-affected urdbean plants indicated the involvement of cowpea mild mottle virus; however, without conforming through Koch’s postulates, the etiology of ULCD remains inconclusive. Claims of different insect vectors involved in the transmission of ULCD make this disease even more mysterious. The information available so far indicates that either two different viruses are causing ULCD or a mixture of viruses is involved. The identity of the virus/es causing ULCD still remains to be unambiguously ascertained. In this review, we attempt to analyze information on the various aspects of ULCD

    Lignin-chitosan-based biocomposite film for the localized delivery of TLR7 agonist imiquimod

    No full text
    Abstract Background As the leading form of non-melanoma skin cancer, basal cell carcinoma (BCC) presents a considerable challenge to healthcare systems, owing to its widespread occurrence. Current treatment options, such as surgical excision, cryotherapy, and localized therapies like imiquimod or 5-fluorouracil, face challenges, especially in designing drug delivery systems that provide prolonged therapeutic effects. This study aims to develop bio-composite polymeric films for localized drug delivery using natural polymers, lignin, and chitosan, to enhance the delivery of the TLR7 agonist imiquimod for BCC treatment. Results The optimized biofilms were prepared by adjusting the polymer ratio and drying techniques to achieve a balanced composition for localized imiquimod delivery. FTIR and DSC characterization confirmed successful drug incorporation into the biofilms, while microscopic studies revealed the biofilms homogeneity and fibrous nature. Drug release studies demonstrated pH-dependent kinetics, with higher release rates at neutral pH. The biofilms exhibited slow and sustained drug release, promising prolonged therapeutic effects. Additionally, the biofilms were non-hemolytic, showed significant antioxidant activity, and demonstrated selective cytotoxicity against B16–F10 mouse skin melanoma cells. Conclusions This study suggests that lignin-chitosan-based imiquimod-loaded biofilms hold potential as an effective topical treatment for BCC. The biofilm’s ability to provide sustained drug release, along with their biocompatibility and selective cytotoxicity, indicates a promising approach to enhancing BCC therapy. Graphical abstrac
    corecore