19 research outputs found

    An RNA Interference Tool to Silence Genes in Sarcoptes scabiei Eggs

    No full text
    In a quest for new interventions against scabies—a highly significant skin disease of mammals, caused by a parasitic mite Sarcoptes scabiei—we are focusing on finding new intervention targets. RNA interference (RNAi) could be an efficient functional genomics approach to identify such targets. The RNAi pathway is present in S. scabiei and operational in the female adult mite, but other developmental stages have not been assessed. Identifying potential intervention targets in the egg stage is particularly important because current treatments do not kill this latter stage. Here, we established an RNAi tool to silence single-copy genes in S. scabiei eggs. Using sodium hypochlorite pre-treatment, we succeeded in rendering the eggshell permeable to dsRNA without affecting larval hatching. We optimised the treatment of eggs with gene-specific dsRNAs to three single-copy target genes (designated Ss-Cof, Ss-Ddp, and Ss-Nan) which significantly and repeatedly suppressed transcription by ~66.6%, 74.3%, and 84.1%, respectively. Although no phenotypic alterations were detected in dsRNA-treated eggs for Ss-Cof and Ss-Nan, the silencing of Ss-Ddp resulted in a 38% reduction of larval hatching. This RNAi method is expected to provide a useful tool for larger-scale functional genomic investigations for the identification of essential genes as potential drug targets

    Investigating the Antibacterial Properties of Prospective Scabicides

    No full text
    Scabies is a dermatological disease found worldwide. Mainly in tropical regions, it is also the cause of significant morbidity and mortality due to its association with potentially severe secondary bacterial infections. Current treatment strategies for scabies do not consider the role of opportunistic bacteria, and here we investigate whether current and emerging scabicides can offer any anti-bacterial protection. Using the broth microdilution method, we examined antimicrobial potential of the current scabicide ivermectin and emerging scabies treatments: abametapir, mānuka oil, and its individual β-triketones. Our results demonstrate that the two novel scabicides abametapir and mānuka oil have antimicrobial properties against common scabies-associated bacteria, specifically Staphylococcus aureus, Streptococcus pyogenes, Streptococcus dysgalactiae subsp. equisimilis and Acinetobacter baumannii. The current scabicide ivermectin offers some antimicrobial activity and is capable of inhibiting the growth aforementioned bacteria. This research is important as it could help to inform future best treatment options of scabies, and scabies-related impetigo

    A unique group of scabies mite pseudoproteases promotes cutaneous blood coagulation and delays plasmin-induced fibrinolysis.

    No full text
    BackgroundScabies, a highly contagious skin disease affecting more than 200 million people worldwide at any time, is caused by the parasitic mite Sarcoptes scabiei. In the absence of molecular markers, diagnosis requires experience making surveillance and control challenging. Superficial microthrombi in the absence of vasculitis in scabies-affected skin are a recognised, yet unexplained histopathological differential of scabies infection. This study demonstrates that a family of Scabies Mite Inactivated Cysteine Protease Paralogues (SMIPP-Cs) excreted by the mites plays a role in formation of scabies-induced superficial microthrombi.Methodology/principal findingsA series of in vitro and ex vivo experiments involving two representative recombinant SMIPP-Cs was carried out. In the presence of SMIPP-Cs, the thrombin clotting time (TCT), fibrin formation and plasmin induced fibrinolysis were monitored in vitro. The ultrastructure of the SMIPP-C-modulated fibrin was analysed by Scanning Electron Microscopy (SEM). Immuno-histological analyses were performed ex vivo, to localise the SMIPP-C proteins within scabies infected skin biopsies. SMIPP-Cs displayed pro-coagulant properties. They bound calcium ions, reduced the thrombin clotting time, enhanced the fibrin formation rate and delayed plasmin-induced fibrinolysis. The SMIPP-Cs associated with fibrin clots during fibrinogen polymerisation and did not bind to preformed fibrin. Scanning electron microscopy revealed that the fibrin clots formed in the presence of SMIPP-Cs were aberrant and denser than normal fibrin clots. SMIPP-Cs were detected in microthrombi which are commonly seen in scabietic skin.Conclusions/significanceThe SMIPP-Cs are the first scabies mite proteins found in sub-epidermal skin layers and their pro-coagulant properties promote superficial microthrombi formation in scabetic skin. Further research is needed to evaluate their potential as diagnostic or therapeutic target

    Gene silencing by RNA interference in Sarcoptes scabiei: a molecular tool to identify novel therapeutic targets

    No full text
    Abstract Background Scabies is one of the most common and widespread parasitic skin infections globally, affecting a large range of mammals including humans, yet the molecular biology of Sarcoptes scabiei is astonishingly understudied. Research has been hampered primarily due to the difficulty of sampling or culturing these obligatory parasitic mites. A further and major impediment to identify and functionally analyse potential therapeutic targets from the recently emerging molecular databases is the lack of appropriate molecular tools. Methods We performed standard BLAST based searches of the existing S. scabiei genome databases using sequences of genes described to be involved in RNA interference in Drosophila and the mite model organism Tetranychus urticae. Experimenting with the S. scabiei mu-class glutathione S-transferase (SsGST-mu1) as a candidate gene we explored the feasibility of gene knockdown in S. scabiei by double-stranded RNA-interference (dsRNAi). Results We provide here an analysis of the existing S. scabiei draft genomes, confirming the presence of a double stranded RNA (dsRNA) - mediated silencing machinery. We report for the first time experimental gene silencing by RNA interference (RNAi) in S. scabiei. Non-invasive immersion of S. scabiei in dsRNA encoding an S. scabiei glutathione S-transferase mu-class 1 enzyme (SsGST-mu1) resulted in a 35% reduction in the transcription of the target gene compared to controls. Conclusions A series of experiments identified the optimal conditions allowing systemic experimental RNAi without detrimental side effects on mite viability. This technique can now be used to address the key questions on the fundamental aspects of mite biology and pathogenesis, and to assess the potential therapeutic benefits of silencing S. scabiei target genes

    執筆者 ; 投稿規程

    Get PDF
    Background: Scabies is worldwide one of the most common, yet neglected, parasitic skin infections, affecting a wide range of mammals including humans. Limited treatment options and evidence of emerging mite resistance against the currently used drugs drive our research to explore new therapeutic candidates. Previously, we discovered a multicopy family of genes encoding cysteine proteases with their catalytic sites inactivated by mutation (SMIPP-Cs). This protein family is unique in parasitic scabies mites and is absent in related non-burrowing mites. We postulated that the SMIPP-Cs have evolved as an adaptation to the parasitic lifestyle of the scabies mite. To formulate testable hypotheses for their functions and to propose possible strategies for translational research we investigated whether the SMIPP-Cs are common to all scabies mite varieties and where within the mite body as well as when throughout the parasitic life-cycle they are expressed. Results: SMIPP-C sequences from human, pig and dog mites were analysed bioinformatically and the phylogenetic relationships between the SMIPP-C multi-copy gene families of human, pig and dog mites were established. Results suggest that amplification of the SMIPP-C genes occurred in a common ancestor and individual genes evolved independently in the different mite varieties. Recombinant human mite SMIPP-C proteins were produced and used for murine polyclonal antibody production. Immunohistology on skin sections from human patients localised the SMIPP-Cs in the mite gut and in mite faeces within in the epidermal skin burrows. SMIPP-C transcription into mRNA in different life stages was assessed in human and pig mites by reverse transcription followed by droplet digital PCR (ddPCR). High transcription levels of SMIPP-C genes were detected in the adult female life stage in comparison to all other life stages. Conclusions: The fact that the SMIPP-Cs are unique to three Sarcoptes varieties, present in all burrowing life stages and highly expressed in the digestive system of the infective adult female life stage may highlight an essential role in parasitism. As they are excreted from the gut in scybala they presumably are able to interact or interfere with host proteins present in the epidermis

    Evidence that Transcriptional Alterations in Sarcoptes scabiei Are under Tight Post-Transcriptional (microRNA) Control

    No full text
    Here, we explored transcriptomic differences among early egg (Ee), late egg (Le) and adult female (Af) stages of the scabies mite, Sarcoptes scabiei, using an integrative bioinformatic approach. We recorded a high, negative correlation between miRNAs and genes with decreased mRNA transcription between the developmental stages, indicating substantial post-transcriptional repression; we also showed a positive correlation between miRNAs and genes with increased mRNA transcription, suggesting indirect post-transcriptional regulation. The alterations in mRNA transcription between the egg and adult female stages of S. scabiei were inferred to be linked to metabolism (including carbohydrate and lipid degradation, amino acid and energy metabolism), environmental information processing (e.g., signal transduction and signalling molecules), genetic information processing (e.g., transcription and translation) and/or organismal systems. Taken together, these results provide insight into the transcription of this socioeconomically important parasitic mite, with a particular focus on the egg stage. This work encourages further, detailed laboratory studies of miRNA regulation across all developmental stages of S. scabiei and might assist in discovering new intervention targets in the egg stage of S. scabiei

    Proteomic analysis of Sarcoptes scabiei reveals that proteins differentially expressed between eggs and female adult stages are involved predominantly in genetic information processing, metabolism and/or host-parasite interactions

    No full text
    Presently, there is a dearth of proteomic data for parasitic mites and their relationship with the host animals. Here, using a high throughput LC-MS/MS-based approach, we undertook the first comprehensive, large-scale proteomic investigation of egg and adult female stages of the scabies mite, Sarcoptes scabiei–one of the most important parasitic mites of humans and other animals worldwide. In total, 1,761 S. scabiei proteins were identified and quantified with high confidence. Bioinformatic analyses revealed differentially expressed proteins to be involved predominantly in biological pathways or processes including genetic information processing, energy (oxidative phosphorylation), nucleotide, amino acid, carbohydrate and/or lipid metabolism, and some adaptive processes. Selected, constitutively and highly expressed proteins, such as peptidases, scabies mite inactivated protease paralogues (SMIPPs) and muscle proteins (myosin and troponin), are proposed to be involved in key biological processes within S. scabiei, host-parasite interactions and/or the pathogenesis of scabies. These proteomic data will enable future molecular, biochemical and physiological investigations of early developmental stages of S. scabiei and the discovery of novel interventions, targeting the egg stage, given its non-susceptibility to acaricides currently approved for the treatment of scabies in humans. Author summary Scabies is a neglected tropical disease caused by the parasitic mite Sarcoptes scabiei. The treatment and control of scabies are challenging, as there is no vaccine and the two mostly used broad-spectrum acaricides (i.e. ivermectin and permethrin) do not kill the key developmental stage (egg) of the mite that enables the re-establishment of infection. The availability of a well-assembled genome for S. scabiei now provides a foundation to explore the molecular biology, biochemistry and physiology of this mite. Here, we characterised the first somatic proteome of key developmental stages of S. scabiei using high throughput LC-MS/MS. Bioinformatic analyses of proteomic data indicate that proteins expressed differentially between egg and female adult stages are mainly involved in biological pathways or processes, such as genetic information processing, energy (oxidative phosphorylation), nucleotide, amino acid, carbohydrate and/or lipid metabolism in the mite. These proteomic data should underpin further investigations of early developmental stages of S. scabiei with a focus on identifying novel intervention targets for scabies

    Analyses of the somatic proteome of <i>Sarcoptes scabiei</i>.

    No full text
    (A) Principal component analysis (PCA) of the somatic proteomes of eggs at an early stage (Ee), eggs at a late stage (El) of embryonation/development, and adult females (Af) of Sarcoptes scabiei, respectively. (B) Heatmap displaying the expression profiles for these three distinct developmental stages. Normalised protein abundance is shown in a grey-to-blue scale (i.e., low to high abundance).</p
    corecore