13,155 research outputs found

    Small-angle approximation to the transfer of narrow laser beams in anisotropic scattering media

    Get PDF
    The broadening and the signal power detected of a laser beam traversing an anisotropic scattering medium were examined using the small-angle approximation to the radiative transfer equation in which photons suffering large-angle deflections are neglected. To obtain tractable answers, simple Gaussian and non-Gaussian functions for the scattering phase functions are assumed. Two other approximate approaches employed in the field to further simplify the small-angle approximation solutions are described, and the results obtained by one of them are compared with those obtained using small-angle approximation. An exact method for obtaining the contribution of each higher order scattering to the radiance field is examined but no results are presented

    Energy Efficiency Analysis of the Discharge Circuit of Caltech Spheromak Experiment

    Get PDF
    The Caltech spheromak experiment uses a size A ignitron in switching a 59-μF capacitor bank (charged up to 8 kV) across an inductive plasma load. Typical power levels in the discharge circuit are ~200 MW for a duration of ~10 μs. This paper describes the setup of the circuit and the measurements of various impedances in the circuit. The combined impedance of the size A ignitron and the cables was found to be significantly larger than the plasma impedance. This causes the circuit to behave like a current source with low energy transfer efficiency. This behavior is expected to be common with other pulsed plasma experiments of similar size that employ an ignitron switch

    Particle phase function measurements by a new Fiber Array Nephelometer: FAN 1

    Get PDF
    A fiber array polar nephelometer of advanced design, the FAN I is capable of in-situ phase function measurements of scattered light from man-made or natural atmospheric particles. The scattered light is measured at 100 different angles throughout 360 degrees, thus providing a potential measurement of the asymmetry of irregularly shaped particles. Phase functions can be measured at 10 to 100 Hz rates and the range of measurable single particle sizes is from 5 micron m to as large as 8mm. For particles smaller than 5 micro m the ensemble average can be measured. The FAN I is microprocessor controlled and the data may be stored on floppy disk or printed out in tabular and/or graphical form. The optical head may be separated from the computer system for operation in field or adverse conditions. Examples of laboratory measured scattering phase functions obtained with the FAN I for spherical particles is given to illustrate its measurement capabilities

    Heterodyne interferometer with unequal path lengths

    Get PDF
    Laser interferometry is an extensively used diagnostic for plasma experiments. Existing plasma interferometers are designed on the presumption that the scene and reference beam path lengths have to be equal, a requirement that is costly in both the number of optical components and the alignment complexity. It is shown here that having equal path lengths is not necessary - instead what is required is that the path length difference be an even multiple of the laser cavity length. This assertion has been verified in a heterodyne laser interferometer that measures typical line-average densities of 1021/m2\sim 10^{21}/\textrm{m}^2 with an error of 1019/m2\sim 10^{19}/\textrm{m}^2.Comment: 15 pages, 9 figures, to be published in Rev. Sci. Instrum. 77 (2006
    corecore