9 research outputs found

    Quantification of Topological Coupling between DNA Superhelicity and G‑quadruplex Formation

    No full text
    It has been proposed that new transcription modulations can be achieved via topological coupling between duplex DNA and DNA secondary structures, such as G-quadruplexes, in gene promoters through superhelicity effects. Limited by available methodologies, however, such a coupling has not been quantified directly. In this work, using novel magneto-optical tweezers that combine the nanometer resolution of optical tweezers and the easy manipulation of magnetic tweezers, we found that the flexibility of DNA increases with positive superhelicity (σ). More interestingly, we found that the population of G-quadruplex increases linearly from 2.4% at σ = 0.1 to 12% at σ = −0.03. The population then rapidly increases to a plateau of 23% at σ < −0.05. The rapid increase coincides with the melting of double-stranded DNA, suggesting that G-quadruplex formation is correlated with DNA melting. Our results provide evidence for topology-mediated transcription modulation at the molecular level. We anticipate that these high-resolution magneto-optical tweezers will be instrumental in studying the interplay between the topology and activity of biological macromolecules from a mechanochemical perspective

    CD experiments of ILPR-I3 at different pH and temperature in a 10 mM sodium phosphate buffer with 100 mM KCl and 5 µM DNA concentration.

    No full text
    <p>(A) CD spectra of the ILPR-I3 in pH 4.5–8.0. (B) Peak wavelength <i>vs</i> pH for the ILPR-I3 (obtained from (A)) and ILPR-I4 (obtained from the CD spectra of the ILPR-I4 at pH 4.5–8.0, data not shown). (C) CD spectra acquired at 23–68°C (pH 5.5). (D) Peak wavelength <i>vs</i> temperature (obtained from (C)). The transition points in B) and D) are determined by sigmoidal fitting (solid curves).</p

    Sequences of wild type ILPR-I4 and ILPR-I3, a scrambled sequence, and the mutants used in this study.

    No full text
    <p>Sequences of wild type ILPR-I4 and ILPR-I3, a scrambled sequence, and the mutants used in this study.</p

    Mutation analysis in a 10 mM sodium phosphate buffer (pH 5.5) with 100 mM KCl.

    No full text
    <p>(A) 295 nm UV melting curves of the ILPR-I3 (“Wild Type”) and the mutants at 10 µM concentration. (B) Top panel, <i>T</i><sub>1/2-melt</sub> of the mutants and the ILPR-I3. “W” depicts the wild type ILPR-I3. Bottom panel, CD peak shift of the mutants and the scrambled sequence (ILPR-S3) with respect to the 285 nm peak in the ILPR-I3. The horizontal dotted lines (green) represent the average value for each C4 tract. Statistical treatment is represented by the <i>P</i> values in the bottom panel. Please refer to <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0039271#pone-0039271-t001" target="_blank">Table 1</a> for DNA sequences.</p

    Formation of an intermolecular i-motif.

    No full text
    <p>(A) Schematic of the formation of an intermolecular i-motif. The proposed structure in the ILPR-I3 is shown on the left. Each C:CH<sup>+</sup> pair is represented by two opposite rectangles. (B) PAGE gel image of the Br<sub>2</sub> footprinting experiment. Lane 1, the ILPR-I3/ILPR-I1 (I<sub>3</sub>+I<sub>1</sub>) mixture at pH 7.0. Lane 2, the I<sub>3</sub>+I<sub>1</sub> sample at pH 5.5. Lane 3, the ILPR-I3 (I<sub>3</sub>) at pH 5.5. Lane 4, the ILPR-I4 (I<sub>4</sub>) at pH 5.5. The band intensity for lane 2 is shown to the left of the gel. The fold protection for the I<sub>3</sub>+I<sub>1</sub> sample at pH 5.5 is shown to the right. The dotted vertical lines indicate the average fold protection for each C4 tract. The blue arrows indicate the loop cytosines. Error bar represents the standard deviation of three independent experiments. The blue arrows indicate the cytosines in the ACA section of each fragment. Note that the fold protection for adenines at 3'-end (indicated by asterisk *) is not accurate since they are close to the uncut oligo. (C) Normalized rupture force histogram for the I<sub>3</sub>+I<sub>1</sub> sample at pH 5.5. The solid black curve represents a two-peak Gaussian function. The dotted curve is the Gaussian fit for the rupture force histogram of the ILPR-I3 at pH 5.5.</p

    Controlled Particle Collision Leads to Direct Observation of Docking and Fusion of Lipid Droplets in an Optical Trap

    No full text
    As an intracellular organelle, phospholipid-coated lipid droplets have shown increasing importance due to their expanding biological functions other than the lipid storage. The growing biological significance necessitates a close scrutiny on lipid droplets, which have been proposed to mature in a cell through processes such as fusion. Unlike phospholipid vesicles that are well-known to fuse through docking and hemifusion steps, little is known on the fusion of lipid droplets. Herein, we used laser tweezers to capture two micrometer-sized 1,2,3-trioleoylglycerol (triolein) droplets coated with 1-palmitoyl-2-oleoyl-<i>sn</i>-glycero-3-phosphocholine (POPC) that closely resemble intracellular lipid droplets. We started the fusion processes by a well-controlled collision between the two lipid droplets in phosphate buffer at pH 7.4. By monitoring the change in the pathway of a trapping laser that captures the collided lipid droplets, docking and physical fusion events were clearly distinguished for the first time and their lifetimes were determined with a resolution of 10 μs after postsynchronization analysis. Our method revealed that the rate-limiting docking process is affected by anions according to a Hofmeister series, which sheds light on the important role of interfacial water shedding during the process. During the physical fusion, the kinetics between bare triolein droplets is faster than lipid droplets, suggesting that breaking of phospholipid coating is involved in the process. This scenario was further supported by direct observation of a short-lived hemifusion state with ∼46 ms lifetime in POPC-coated lipid droplets, but not in bare triolein droplets

    Long-Loop G‑Quadruplexes Are Misfolded Population Minorities with Fast Transition Kinetics in Human Telomeric Sequences

    No full text
    Single-stranded guanine (G)-rich sequences at the 3′ end of human telomeres provide ample opportunities for physiologically relevant structures, such as G-quadruplexes, to form and interconvert. Population equilibrium in this long sequence is expected to be intricate and beyond the resolution of ensemble-average techniques, such as circular dichroism, NMR, or X-ray crystallography. By combining a force-jump method at the single-molecular level and a statistical population deconvolution at the sub-nanometer resolution, we reveal a complex population network with unprecedented transition dynamics in human telomeric sequences that contain four to eight TTAGGG repeats. Our kinetic data firmly establish that G-triplexes are intermediates to G-quadruplexes while long-loop G-quadruplexes are misfolded population minorities whose formation and disassembly are faster than G-triplexes or regular G-quadruplexes. The existence of misfolded DNA supports the emerging view that structural and kinetic complexities of DNA can rival those of RNA or proteins. While G-quadruplexes are the most prevalent species in all the sequences studied, the abundance of a misfolded G-quadruplex in a particular telomeric sequence decreases with an increase in the loop length or the number of long-loops in the structure. These population patterns support the prediction that in the full-length 3′ overhang of human telomeres, G-quadruplexes with shortest TTA loops would be the most dominant species, which justifies the modeling role of regular G-quadruplexes in the investigation of telomeric structures

    Click Chemistry Assisted Single-Molecule Fingerprinting Reveals a 3D Biomolecular Folding Funnel

    No full text
    A 3D folding funnel was proposed in the 1990s to explain the fast kinetics exhibited by a biomacromolecule in presence of seemingly unlimited folding pathways. Over the years, numerous simulations have been performed with this concept; however, experimental verification is yet to be attained even for the simplest proteins. Here, we have used a click chemistry based strategy to introduce six pairs of handles in a human telomeric DNA sequence. A laser-tweezers-based, single-molecule structural fingerprinting on the six inter-handle distances reveals the formation of a hybrid-1 G-quadruplex in the sequence. Kinetic and thermodynamic fingerprinting on the six trajectories defined by each handle-pair depict a 3D folding funnel and a kinetic topology in which the kinetics pertaining to each handle residue is annotated for this G-quadruplex. We anticipate the methods and the concepts developed here are well applicable to other biomacromolecules, including RNA and proteins

    Single-Molecule Measurements of the Binding between Small Molecules and DNA Aptamers

    No full text
    Aptamers that bind small molecules can serve as basic biosensing platforms. Evaluation of the binding constant between an aptamer and a small molecule helps to determine the effectiveness of the aptamer-based sensors. Binding constants are often measured by a series of experiments with varying ligand or aptamer concentrations. Such experiments are time-consuming, material nonprudent, and prone to low reproducibility. Here, we use laser tweezers to determine the dissociation constant for aptamer–ligand interactions at the single-molecule level from only one ligand concentration. Using an adenosine 5′-triphosphate disodium salt (ATP) binding aptamer as an example, we have observed that the mechanical stabilities of aptamers bound with ATP are higher than those without a ligand. Comparison of the change in free energy of unfolding (Δ<i><i>G</i></i><sub>unfold</sub>) between these two aptamers yields a Δ<i><i>G</i></i> of 33 ± 4 kJ/mol for the binding. By applying a Hess-like cycle at room temperature, we obtained a dissociation constant (<i>K</i><sub>d</sub>) of 2.0 ± 0.2 μM, a value consistent with the <i>K</i><sub>d</sub> obtained from our equilibrated capillary electrophoresis (CE) (2.4 ± 0.4 μM) and close to that determined by affinity chromatography in the literature (6 ± 3 μM). We anticipate that our laser tweezers and CE methodologies may be used to more conveniently evaluate the binding between receptors and ligands and also serve as analytical tools for force-based biosensing
    corecore