260 research outputs found

    Van der Waals Materials for Atomically-Thin Photovoltaics: Promise and Outlook

    Get PDF
    Two-dimensional (2D) semiconductors provide a unique opportunity for optoelectronics due to their layered atomic structure, electronic and optical properties. To date, a majority of the application-oriented research in this field has been focused on field-effect electronics as well as photodetectors and light emitting diodes. Here we present a perspective on the use of 2D semiconductors for photovoltaic applications. We discuss photonic device designs that enable light trapping in nanometer-thickness absorber layers, and we also outline schemes for efficient carrier transport and collection. We further provide theoretical estimates of efficiency indicating that 2D semiconductors can indeed be competitive with and complementary to conventional photovoltaics, based on favorable energy bandgap, absorption, external radiative efficiency, along with recent experimental demonstrations. Photonic and electronic design of 2D semiconductor photovoltaics represents a new direction for realizing ultrathin, efficient solar cells with applications ranging from conventional power generation to portable and ultralight solar power.Comment: 4 figure

    Accelerate & Actualize: Can 2D Materials Bridge the Gap Between Neuromorphic Hardware and the Human Brain?

    Full text link
    Two-dimensional (2D) materials present an exciting opportunity for devices and systems beyond the von Neumann computing architecture paradigm due to their diversity of electronic structure, physical properties, and atomically-thin, van der Waals structures that enable ease of integration with conventional electronic materials and silicon-based hardware. All major classes of non-volatile memory (NVM) devices have been demonstrated using 2D materials, including their operation as synaptic devices for applications in neuromorphic computing hardware. Their atomically-thin structure, superior physical properties, i.e., mechanical strength, electrical and thermal conductivity, as well as gate-tunable electronic properties provide performance advantages and novel functionality in NVM devices and systems. However, device performance and variability as compared to incumbent materials and technology remain major concerns for real applications. Ultimately, the progress of 2D materials as a novel class of electronic materials and specifically their application in the area of neuromorphic electronics will depend on their scalable synthesis in thin-film form with desired crystal quality, defect density, and phase purity.Comment: Neuromorphic Computing, 2D Materials, Heterostructures, Emerging Memory Devices, Resistive, Phase-Change, Ferroelectric, Ferromagnetic, Crossbar Array, Machine Learning, Deep Learning, Spiking Neural Network

    High Photovoltaic Quantum Efficiency in Ultrathin van der Waals Heterostructures

    Get PDF
    We report experimental measurements for ultrathin (< 15 nm) van der Waals heterostructures exhibiting external quantum efficiencies exceeding 50%, and show that these structures can achieve experimental absorbance > 90%. By coupling electromagnetic simulations and experimental measurements, we show that pn WSe2/MoS2 heterojunctions with vertical carrier collection can have internal photocarrier collection efficiencies exceeding 70%.Comment: ACS Nano, 2017. Manuscript (25 pages, 7 figures) plus supporting information (7 pages, 4 figures

    Electrical Control of Linear Dichroism in Black Phosphorus from the Visible to Mid-Infrared

    Get PDF
    The incorporation of electrically tunable materials into photonic structures such as waveguides and metasurfaces enables dynamic control of light propagation by an applied potential. While many materials have been shown to exhibit electrically tunable permittivity and dispersion, including transparent conducting oxides (TCOs) and III-V semiconductors and quantum wells, these materials are all optically isotropic in the propagation plane. In this work, we report the first known example of electrically tunable linear dichroism, observed here in few-layer black phosphorus (BP), which is a promising candidate for multi-functional, broadband, tunable photonic elements. We measure active modulation of the linear dichroism from the mid-infrared to visible frequency range, which is driven by anisotropic quantum-confined Stark and Burstein-Moss effects, and field-induced forbidden-to-allowed optical transitions. Moreover, we observe high BP absorption modulation strengths, approaching unity for certain thicknesses and photon energies

    Cavity-Enhanced Linear Dichroism in a van der Waals Antiferromagnet

    Full text link
    Optical birefringence is a fundamental optical property of crystals widely used for filtering and beam splitting of photons. Birefringent crystals concurrently possess the property of linear dichroism (LD) that allows asymmetric propagation or attenuation of light with two different polarizations. This property of LD has been widely studied from small molecules to polymers and crystals but has rarely been engineered per will. Here, we use the newly discovered spin-charge coupling in van der Waals antiferromagnetic (AFM) insulator FePS3 to induce large in-plane optical anisotropy and consequently LD. We report that the LD in this AFM insulator is tunable both spectrally and magnitude-wise as a function of cavity coupling. We demonstrate near-unity LD in the visible-near infrared range in cavity-coupled FePS3 crystals and derive its dispersion as a function of cavity length and FePS3 thickness. Our results hold wide implications for use of cavity tuned LD as a diagnostic probe for strongly correlated quantum materials as well as opens new opportunities for miniaturized, on-chip beam-splitters and tunable filters.Comment: 14 pages, 5 figure
    • …
    corecore