24 research outputs found

    Phospholipid binding and the activation of group IA secreted phospholipase A2.

    No full text
    Equilibrium dialysis was used to study the binding of two nonhydrolyzable, short chain phospholipid analogues to the secreted group IA phospholipase A(2) (PLA(2)), which has been shown to contain several phospholipid binding sites that dramatically affect activity. This study provides new insight into how these activations occur. One analogue contained a phosphorylethanolamine (DiC(6)SNPE) headgroup, while the other contained a phosphorylcholine (DiC(6)SNPC) headgroup. Using phospholipase D, we incorporated tritium into each analogue. No binding of DiC(6)SNPE to PLA(2) was observed under submicellar conditions. Addition of submicellar amounts of Triton X-100 resulted in a linear nonsaturating response to lipid concentration, suggestive of premicellar aggregation of the DiC(6)SNPE with Triton X-100 and PLA(2). Binding of DiC(6)SNPE when presented as Triton X-100 mixed micelles saturated at 0.93 binding sites per PLA(2) with a K(D) of 38 microM. Addition of sphingomyelin, a potent activator of PLA(2) hydrolysis of phosphorylethanolamine containing compounds, resulted in a 13-fold decrease in the K(D), to 2.8 microM. This suggests that changes in the catalytic site binding affinity contribute to "phosphatidylcholine activation". Binding of DiC(6)SNPC with 2.0 mM Triton X-100 showed positive cooperativity (Hill coefficient of 1.7), which saturated at 2.0 binding sites per PLA(2). No binding of either analogue was observed when the catalytic site was alkylated with p-bromophenacyl bromide. Since p-bromophenacyl bromide does not physically block the phosphatidylcholine activator site, this indicates that the two phosphatidylcholine binding sites interact. The binding studies show that DiC(6)SNPC binds cooperatively to two sites on group IA PLA(2), while DiC(6)SNPE binds to only one site

    Expression of Group IA Phospholipase A 2

    No full text

    Interaction of group IA phospholipase A2 with metal ions and phospholipid vesicles probed with deuterium exchange mass spectrometry.

    No full text
    Deuterium exchange mass spectrometric evaluation of the cobra venom (Naja naja naja) group IA phospholipase A 2 (GIA PLA 2) was carried out in the presence of metal ions Ca (2+) and Ba (2+) and phospholipid vesicles. Novel conditions for digesting highly disulfide bonded proteins and a methodology for studying protein-lipid interactions using deuterium exchange have been developed. The enzyme exhibits unexpectedly slow rates of exchange in the two large alpha-helices of residues 43-53 and 89-101, which suggests that these alpha-helices are highly rigidified by the four disulfide bonds in this region. The binding of Ca (2+) or Ba (2+) ions decreased the deuterium exchange rates for five regions of the protein (residues 24-27, 29-40, 43-53, 103-110, and 111-114). The magnitude of the changes was the same for both ions with the exception of regions of residues 24-27 and 103-110 which showed greater changes for Ca (2+). The crystal structure of the N. naja naja GIA PLA 2 contains a single Ca (2+) bound in the catalytic site, but the crystal structures of related PLA 2s contain a second Ca (2+) binding site. The deuterium exchange studies reported here clearly show that in solution the GIA PLA 2 does in fact bind two Ca (2+) ions. With dimyristoylphosphatidylcholine (DMPC) phospholipid vesicles with 100 microM Ca (2+) present at 0 degrees C, significant areas on the i-face of the enzyme showed decreases in the rate of exchange. These areas included regions of residues 3-8, 18-21, and 56-64 which include Tyr-3, Trp-61, Tyr-63, and Phe-64 proposed to penetrate the membrane surface. These regions also contained Phe-5 and Trp-19, proposed to bind the fatty acyl tails of substrate

    A phospholipid substrate molecule residing in the membrane surface mediates opening of the lid region in group IVA cytosolic phospholipase A2.

    No full text
    The Group IVA (GIVA) phospholipase A(2) associates with natural membranes in response to an increase in intracellular Ca(2+) along with increases in certain lipid mediators. This enzyme associates with the membrane surface as well as binding a single phospholipid molecule in the active site for catalysis. Employing deuterium exchange mass spectrometry, we have identified the regions of the protein binding the lipid surface and conformational changes upon a single phospholipid binding in the absence of a lipid surface. Experiments were carried out using natural palmitoyl arachidonyl phosphatidylcholine vesicles with the intact GIVA enzyme as well as the isolated C2 and catalytic domains. Lipid binding produced changes in deuterium exchange in eight different regions of the protein. The regions with decreased exchange included Ca(2+) binding loop one, which has been proposed to penetrate the membrane surface, and a charged patch of residues, which may be important in interacting with the polar head groups of phospholipids. The regions with an increase in exchange are all located either in the hydrophobic core underneath the lid region or near the lid and hinge regions from 403 to 457. Using the GIVA phospholipase A(2) irreversible inhibitor methyl-arachidonyl fluorophosphonate, we were able to isolate structural changes caused only by pseudo-substrate binding. This produced results that were very similar to natural lipid binding in the presence of a lipid interface with the exception of the C2 domain and region 466-470. This implies that most of the changes seen in the catalytic domain are due to a substrate-mediated, not interface-mediated, lid opening, which exposes the active site to water. Finally experiments carried out with inhibitor plus phospholipid vesicles showed decreases at the C2 domain as well as charged residues on the putative membrane binding surface of the catalytic domain revealing the binding sites of the enzyme to the lipid surface
    corecore