91 research outputs found

    Up-regulated expression of LAMP2 and autophagy activity during neuroendocrine differentiation of prostate cancer LNCaP cells

    Get PDF
    Neuroendocrine (NE) prostate cancer (PCa) is a highly aggressive subtype of prostate cancer associated with resistance to androgen ablation therapy. In this study, we used LNCaP prostate cancer cells cultured in a serum-free medium for 6 days as a NE model of prostate cancer. Serum deprivation increased the expression of NE markers such as neuron-specific enolase (NSE) and ÎČIII tubulin (ÎČIII tub) and decreased the expression of the androgen receptor protein in LNCaP cells. Using cDNA microarrays, we compared gene expression profiles of NE cells and non-differentiated LNCaP cells. We identified up-regulation of 155 genes, among them LAMP2, a lysosomal membrane protein involved in lysosomal stability and autophagy. We then confirmed up-regulation of LAMP2 in NE cells by qRT-PCR, Western blot and confocal microscopy assays, showing that mRNA up-regulation correlated with increased levels of LAMP2 protein. Subsequently, we determined autophagy activity in NE cells by assessing the protein levels of SQSTM/p62 and LC3 by Western blot and LC3 and Atg5 mRNAs content by qRT-PCR. The decreased levels of SQSTM/p62 was accompanied by an enhanced expression of LC3 and ATG5, suggesting activation of autophagy in NE cells. Blockage of autophagy with 1ÎŒM AKT inhibitor IV, or by silencing Beclin 1 and Atg5, prevented NE cell differentiation, as revealed by decreased levels of the NE markers. In addition, AKT inhibitor IV as well as Beclin1 and Atg5 kwockdown attenuated LAMP2 expression in NE cells. On the other hand, LAMP2 knockdown by siRNA led to a marked blockage of autophagy, prevention of NE differentiation and decrease of cell survival. Taken together, these results suggest that LAMP2 overexpression assists NE differentiation of LNCaP cells induced by serum deprivation and facilitates autophagy activity in order to attain the NE phenotype and cell survival. LAMP2 could thus be a potential biomarker and potential target for NE prostate cancer

    A pulmonary mass and hyperviscosity

    No full text

    Biochemical and toxicological properties of the oxidation products of catecholamines.

    No full text
    The normal catabolism of catecholamines proceeds through enzymatic pathways (monoaminooxidase, catechol-o-methyltransferase, and phenolsulphotransferase). In addition, nonenzymatic oxidative pathways might take place since catechols are readily oxidized. In this review article, the pathways of formation of the oxidation products of catecholamines and their reactions are described. The interactions of these products with different biological systems and their toxicity are examined. Among the reactions known to occur is that with sulfhydryls, which results in either a covalently linked adduct or disulfide production. Another interesting pathway to toxicity involves the oxidation of these catecholamine products by oxygen, with the formation of damaging oxygen-derived species. The action of the oxidation products of catecholamines is outlined, with special attention to the nervous and cardiac systems

    Direct and respiratory chain-mediated redox cycling of adrenochrome.

    No full text
    Adrenochrome is reduced by ascorbate in a reaction accompanied by a large and rapid oxygen uptake. The rates of adrenochrome reduction and the concomitant oxygen uptake are decreased in the presence of superoxide dismutase or catalase. The species formed on the one-electron reduction of adrenochrome (i.e., the semiquinone) was shown by pulse radiolysis to rapidly react with oxygen (9.10(8) M-1.s-1), indicating the occurrence of a redox cycling in a system formed by adrenochrome, a reducing agent, and oxygen. Adrenochrome is also reduced to the corresponding semiquinone by complex I of beef heart submitochondrial particles supplemented with NADH, while succinate is unable to support this reduction. The o-semiquinone is the intermediate species in the superoxide-generating cycle resulting from both non-enzymatic and enzymatic reduction. The toxic effects of adrenochrome and its pathophysiological role can be explained, at least in part, on the basis of the demonstrated cycle
    • 

    corecore