84 research outputs found

    Up-regulated expression of LAMP2 and autophagy activity during neuroendocrine differentiation of prostate cancer LNCaP cells

    Get PDF
    Neuroendocrine (NE) prostate cancer (PCa) is a highly aggressive subtype of prostate cancer associated with resistance to androgen ablation therapy. In this study, we used LNCaP prostate cancer cells cultured in a serum-free medium for 6 days as a NE model of prostate cancer. Serum deprivation increased the expression of NE markers such as neuron-specific enolase (NSE) and ÎČIII tubulin (ÎČIII tub) and decreased the expression of the androgen receptor protein in LNCaP cells. Using cDNA microarrays, we compared gene expression profiles of NE cells and non-differentiated LNCaP cells. We identified up-regulation of 155 genes, among them LAMP2, a lysosomal membrane protein involved in lysosomal stability and autophagy. We then confirmed up-regulation of LAMP2 in NE cells by qRT-PCR, Western blot and confocal microscopy assays, showing that mRNA up-regulation correlated with increased levels of LAMP2 protein. Subsequently, we determined autophagy activity in NE cells by assessing the protein levels of SQSTM/p62 and LC3 by Western blot and LC3 and Atg5 mRNAs content by qRT-PCR. The decreased levels of SQSTM/p62 was accompanied by an enhanced expression of LC3 and ATG5, suggesting activation of autophagy in NE cells. Blockage of autophagy with 1ÎŒM AKT inhibitor IV, or by silencing Beclin 1 and Atg5, prevented NE cell differentiation, as revealed by decreased levels of the NE markers. In addition, AKT inhibitor IV as well as Beclin1 and Atg5 kwockdown attenuated LAMP2 expression in NE cells. On the other hand, LAMP2 knockdown by siRNA led to a marked blockage of autophagy, prevention of NE differentiation and decrease of cell survival. Taken together, these results suggest that LAMP2 overexpression assists NE differentiation of LNCaP cells induced by serum deprivation and facilitates autophagy activity in order to attain the NE phenotype and cell survival. LAMP2 could thus be a potential biomarker and potential target for NE prostate cancer

    A pulmonary mass and hyperviscosity

    No full text

    A novel mutation in the mitochondrial tRNA(Ser(UCN)) gene in a family with non-syndromic sensorineural hearing impairment

    No full text
    We describe a family with non-syndromic sensorineural hearing impairment inherited in a manner consistent with maternal transmission. Affected members were found to have a novel heteroplasmic mtDNA mutation, T7510C, in the tRNA(Ser(UCN)) gene. This mutation was not found in 661 controls, is well conserved between species, and disrupts base pairing in the acceptor stem of the tRNA, making it the probable cause of hearing impairment in this family. Sequencing of the other mitochondrial tRNA genes did not show any other pathogenic mutations. Four other mutations causing hearing impairment have been reported in the tRNA(Ser(UCN)) gene, two having been shown to affect tRNA(Ser(UCN)) levels. With increasing numbers of reports of mtDNA mutations causing hearing impairment, screening for such mutations should be considered in all cases unless mitochondrial inheritance can be excluded for certain.‹‹‹Keywords: hearing impairment; mtDNA mutation; tRNA(Ser(UCN)
    • 

    corecore