3 research outputs found

    Spectroscopic study of photosystem II reaction center

    No full text
    Available from STL Prague, CZ / NTK - National Technical LibrarySIGLECZCzech Republi

    Low-temperature spectroscopy of bacteriochlorophyll c aggregates

    No full text
    Chlorosomes from green photosynthetic bacteria belong to the most effective light-harvesting antennas found in nature. Quinones incorporated in bacterichlorophyll (BChl) c aggregates inside chlorosomes play an important redox-dependent photo-protection role against oxidative damage of bacterial reaction centers. Artificial BChl c aggregates with and without quinones were prepared. We applied hole-burning spectroscopy and steady-state absorption and emission techniques at 1.9 K and two different redox potentials to investigate the role of quinones and redox potential on BChl c aggregates at low temperatures. We show that quinones quench the excitation energy in a similar manner as at room temperature, yet the quenching process is not as efficient as for chlorosomes. Interestingly, our data suggest that excitation quenching partially proceeds from higher excitonic states competing with ultrafast exciton relaxation. Moreover, we obtained structure-related parameters such as reorganization energies and inhomogeneous broadening of the lowest excited state, providing experimental ground for theoretical studies aiming at designing plausible large-scale model for BChl c aggregates including disorder

    mTOR signaling in proteostasis and its relevance to autism spectrum disorders

    No full text
    Proteins are extremely labile cellular components, especially at physiological temperatures. The appropriate regulation of protein levels, or proteostasis, is essential for all cells. In the case of highly polarized cells like neurons, proteostasis is also crucial at synapses, where quick confined changes in protein composition occur to support synaptic activity and plasticity. The accurate regulation of those cellular processes controlling protein synthesis and degradation is necessary for proteostasis, and its deregulation has deleterious consequences in brain function. Alterations in those cellular mechanisms supporting synaptic protein homeostasis have been pinpointed in autism spectrum disorders such as tuberous sclerosis, neurofibromatosis 1, PTEN-related disorders, fragile X syndrome, MECP2 disorders and Angelman syndrome. Proteostasis alterations in these disorders share the alterations in mechanistic/mammalian target of rapamycin (mTOR) signaling pathway, an intracellular pathway with key synaptic roles. The aim of the present review is to describe the recent literature on the major cellular mechanisms involved in proteostasis regulation in the synaptic context, and its association with mTOR signaling deregulations in various autism spectrum disorders. Altogether, the cellular and molecular mechanisms in synaptic proteostasis could be the foundation for novel shared therapeutic strategies that would take advantage of targeting common disorder mechanisms.This review was supported by grant BFU2015-68568-P (MINECO/FEDER, EU) to AO
    corecore