60 research outputs found
Differential Effects of Vpr on Single-cycle and Spreading HIV-1 Infections in CD4+ T-cells and Dendritic Cells
The Vpr protein of human immunodeficiency virus type 1 (HIV-1) contributes to viral replication in non-dividing cells, specifically those of the myeloid lineage. However, the effects of Vpr in enhancing HIV-1 infection in dendritic cells have not been extensively investigated. Here, we evaluated the role of Vpr during infection of highly permissive peripheral blood mononuclear cells (PBMCs) and CD4+ T-cells and compared it to that of monocyte-derived dendritic cells (MDDCs), which are less susceptible to HIV-1 infection. Infections of dividing PBMCs and non-dividing MDDCs were carried out with single-cycle and replication-competent HIV-1 encoding intact Vpr or Vpr-defective mutants. In contrast to previous findings, we observed that single-cycle HIV-1 infection of both PBMCs and MDDCs was significantly enhanced in the presence of Vpr when the viral stocks were carefully characterized and titrated. HIV-1 DNA quantification revealed that Vpr only enhanced the reverse transcription and nuclear import processes in single-cycle HIV-1 infected MDDCs, but not in CD4+ T-cells. However, a significant enhancement in HIV-1 gag mRNA expression was observed in both CD4+ T-cells and MDDCs in the presence of Vpr. Furthermore, Vpr complementation into HIV-1 virions did not affect single-cycle viral infection of MDDCs, suggesting that newly synthesized Vpr plays a significant role to facilitate single-cycle HIV-1 infection. Over the course of a spreading infection, Vpr significantly enhanced replication-competent HIV-1 infection in MDDCs, while it modestly promoted viral infection in activated PBMCs. Quantification of viral DNA in replication-competent HIV-1 infected PBMCs and MDDCs revealed similar levels of reverse transcription products, but increased nuclear import in the presence of Vpr independent of the cell types. Taken together, our results suggest that Vpr has differential effects on single-cycle and spreading HIV-1 infections, which are dependent on the permissiveness of the target cell
Conserved, N-Linked Carbohydrates of Human Immunodeficiency Virus Type 1 gp41 Are Largely Dispensable for Viral Replication
The transmembrane subunit (TM) of human immunodeficiency virus type 1 (HIV-1) envelope protein contains four well-conserved sites for the attachment of N-linked carbohydrates. To study the contribution of these N-glycans to the function of TM, we systematically mutated the sites individually and in all combinations and measured the effects of each on viral replication in culture. The mutants were derived from SHIV-KB9, a simian immunodeficiency virus/HIV chimera with an envelope sequence that originated from a primary HIV-1 isolate. The attachment site mutants were generated by replacing the asparagine codon of each N-X-S/T motif with a glutamine codon. The mobilities of the variant transmembrane proteins in sodium dodecyl sulfate-polyacrylamide gel electrophoresis suggested that all four sites are utilized for carbohydrate attachment. Transfection of various cell lines with the resulting panel of mutant viral constructs revealed that the N-glycan attachment sites are largely dispensable for viral replication. Fourteen of the 15 mutants were replication competent, although the kinetics of replication varied depending on the mutant and the cell type. The four single mutants (g1, g2, g3, and g4) and all six double mutants (g12, g13, g14, g23, g24, and g34) replicated in both human and rhesus monkey T-cell lines, as well as in primary rhesus peripheral blood mononuclear cells. Three of the four triple mutants (g124, g134, and g234) replicated in all cell types tested. The triple mutant g123 replicated poorly in immortalized rhesus monkey T cells (221 cells) and did not replicate detectably in CEMx174 cells. However, at 3 weeks posttransfection of 221 cells, a variant of g123 emerged with a new N-glycan attachment site which compensated for the loss of sites 1, 2, and 3 and resulted in replication kinetics similar to those of the parental virus. The quadruple mutant (g1234) did not replicate in any cell line tested, and the g1234 envelope protein was nonfunctional in a quantitative cell-cell fusion assay. The synthesis and processing of the quadruple mutant envelope protein appeared similar in transient assays to those of the parental SHIV-KB9 envelope. Given their high degree of conservation, the four N-linked carbohydrate attachment sites on the external domain of gp41 are surprisingly dispensable for viral replication. The viral variants described in this report should prove useful for investigation of the contribution of carbohydrate moieties on gp41 to recognition by antibodies, shielding from antibody-mediated neutralization, and structure-function relationships
- β¦