37 research outputs found

    The MAP kinase ERK and its scaffold protein MP1 interact with the chromatin regulator Corto during Drosophila wing tissue development

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Mitogen-activated protein kinase (MAPK) cascades (p38, JNK, ERK pathways) are involved in cell fate acquisition during development. These kinase modules are associated with scaffold proteins that control their activity. In <it>Drosophila</it>, <it>dMP1</it>, that encodes an ERK scaffold protein, regulates ERK signaling during wing development and contributes to intervein and vein cell differentiation. Functional relationships during wing development between a chromatin regulator, the Enhancer of Trithorax and Polycomb Corto, ERK and its scaffold protein dMP1, are examined here.</p> <p>Results</p> <p>Genetic interactions show that <it>corto </it>and <it>dMP1 </it>act together to antagonize <it>rolled </it>(which encodes ERK) in the future intervein cells, thus promoting intervein fate. Although Corto, ERK and dMP1 are present in both cytoplasmic and nucleus compartments, they interact exclusively in nucleus extracts. Furthermore, Corto, ERK and dMP1 co-localize on several sites on polytene chromosomes, suggesting that they regulate gene expression directly on chromatin. Finally, Corto is phosphorylated. Interestingly, its phosphorylation pattern differs between cytoplasm and nucleus and changes upon ERK activation.</p> <p>Conclusions</p> <p>Our data therefore suggest that the Enhancer of Trithorax and Polycomb Corto could participate in regulating vein and intervein genes during wing tissue development in response to ERK signaling.</p

    Corto and DSP1 interact and bind to a maintenance element of the Scr Hox gene: understanding the role of Enhancers of trithorax and Polycomb

    Get PDF
    BACKGROUND: Polycomb-group genes (PcG) encode proteins that maintain homeotic (Hox) gene repression throughout development. Conversely, trithorax-group (trxG) genes encode positive factors required for maintenance of long term Hox gene activation. Both kinds of factors bind chromatin regions called maintenance elements (ME). Our previous work has shown that corto, which codes for a chromodomain protein, and dsp1, which codes for an HMGB protein, belong to a class of genes called the Enhancers of trithorax and Polycomb (ETP) that interact with both PcG and trxG. Moreover, dsp1 interacts with the Hox gene Scr, the DSP1 protein is present on a Scr ME in S2 cells but not in embryos. To understand better the role of ETP, we addressed genetic and molecular interactions between corto and dsp1. RESULTS: We show that Corto and DSP1 proteins co-localize at 91 sites on polytene chromosomes and co-immunoprecipitate in embryos. They interact directly through the DSP1 HMG-boxes and the amino-part of Corto, which contains a chromodomain. In order to search for a common target, we performed a genetic interaction analysis. We observed that corto mutants suppressed dsp1(1 )sex comb phenotypes and enhanced Antp(Scx )phenotypes, suggesting that corto and dsp1 are simultaneously involved in the regulation of Scr. Using chromatin immunoprecipitation of the Scr ME, we found that Corto was present on this ME both in Drosophila S2 cells and in embryos, whereas DSP1 was present only in S2 cells. CONCLUSION: Our results reveal that the proteins Corto and DSP1 are differently recruited to a Scr ME depending on whether the ME is active, as seen in S2 cells, or inactive, as in most embryonic cells. The presence of a given combination of ETPs on an ME would control the recruitment of either PcG or TrxG complexes, propagating the silenced or active state

    Interacting genetic factors controlling the antibody response against the H2-2 specificity

    No full text
    International audienceThe antibody response against the H-2.2 specificity has been studied in three H-2 d strains, B10.D2, DBA/2, and BALB/c, and their hybrids (B10.D2 Ă— DBA/2)F1 and (B10.D2 Ă— BALB/c)F1. The genetic control of the response appears to be complex: The three pure strains are responders, whereas both hybrids when immunized with C3H-HTG are nonresponders. Individual analysis of N3 offspring is compatible with the idea that, in this combination, an Ea-4 incompatibility between donor and immunized strain is necessary for the anti-H-2.2 response to occur. H-2 d /H-2 k hybrids (B10.BR Ă— B10.D2)F1 or (B10.BR Ă— DBA/2)F1 are responders when immunized with C57BL/10 (H-2 b ) but not with B10.A(2R) (H-2 h ), indicating that simultaneously recognized H-2 specificities are necessary for the anti-H-2.2 response

    Identification et caractérisation des partenaires protéiques de DSP1 chez Drosophila melanogaster

    No full text
    Chez les eucaryotes pluricellulaires, la différenciation des cellules repose en partie sur l activation oula répression des gènes. Les profils d expression génique mis en place vont perdurer d une générationcellulaire à l autre. Ce phénomène met en jeu des mécanismes épigénétiques qui remodèlentlocalement la structure de la chromatine. Chez Drosophila melanogaster, les protéines des groupesPolycomb (PcG) et Trithorax (TrxG) participent au maintien du profil d expression des gènes au coursdu développement. Les protéines PcG maintiennent les gènes réprimés tandis que les protéines TrxGmaintiennent les gènes activés. Une troisième classe de protéines nommée Enhancers of Trithoraxand Polycomb (ETP) module l activité des PcG et TrxG. Dorsal Switch Protein 1 (DSP1) est uneprotéine HMGB (High Mobility Group B) classée comme une ETP. Par tamisage moléculaire, nousavions montré que la protéine DSP1 était présente au sein de complexes de poids moléculaire de 100kDa à 1 MDa. Le travail de thèse présenté ici a pour but d identifier les partenaires de la protéineDSP1 dans l embryon et de mieux connaître les propriétés biochimiques de DSP1. Premièrement, j aimis en place puis effectué l immunopurification des complexes contenant DSP1 dans des extraitsprotéiques embryonnaires. Cette approche nous a permis d identifier 23 partenaires putatifs de laprotéine DSP1. Parmi ces protéines, nous avons identifié la protéine Rm62 qui est une ARN hélicaseà boîte DEAD. Les relations biologiques entre DSP1 et Rm62 ont été précisées. Deuxièmement, j aidéterminé, par une approche biochimique, de nouvelles caractéristiques physico-chimiques de laprotéine DSP1.In multicellular organism, the identity of cell is determined by several factors playing on genesexpression. Once established, the gene expression pattern is transmitted to daughter cells through aprocess involving epigenetic mechanisms that locally reshape the structure of chromatin. In Drosophilamelanogaster, the Polycomb (PcG) and trithorax (trxG) group genes are involved in the maintenanceof gene expression profile during development. Inside multimeric complexes, PcG proteins maintaingenes in repressed state whereas TrxG maintain genes active. A third class of proteins, calledEnhancers of Trithorax and Polycomb, regulate PcG and TrxG activities. Dorsal Switch Protein 1(DSP1) is a High Mobility Group B protein acting as an ETP. But DSP1 has not yet been identified inPcG or TrxG complexes. On the basis of gel filtration analysis of protein complexes in embryo nuclearextracts, it appears that the majority of DSP1 is present in complex(es) from 100 kDa to 1MDa. Aimsof present work are the identification of DSP1 protein partners in drosophila embryo and thecharacterization of biochemical properties of DSP1. Firstly, I used immunopurification from drosophilaembryonic nuclear extracts. The proteins purified with DSP1 were characterized through sequencingof peptides from individual protein bands by mass spectrometry. Among identified proteins, wefocused on the DEAD Box RNA helicase, Rm62. The role of interaction between DSP1 and Rm62 hasbeen characterized. Secondly, I have identified a new physicochemical aspect of DSP1 protein.ORLEANS-SCD-Bib. electronique (452349901) / SudocSudocFranceF

    Studies of a novel repetitive sequence family in the genome of mice.

    No full text
    International audienceA new middle repetitive sequence is described in the mouse genome. It has been revealed with a recombinant clone isolated from a Mus musculus BamHI gene library constructed in pBR322 and containing an insertion of 1.73 kb. When digests of genomic DNA were subjected to Southern blot hybridization, using the 1.73-kb insert as probe, we obtained a light smear and discrete bands, indicating a dispersion in the mouse genome of this sequence. This 1.73-kb sequence seems to be a part of a greater repetitive sequence at least 6 kb in length. The sizes of the bands hybridizing with the 1.73-kb insert are similar when compared between different laboratory strains but differ remarkably between the two species M. musculus and Mus caroli. We have shown also a great variation in the copy number of the sequence studied between these two species. When rat DNA is probed with the 1.73-kb insert, no hybridization is observed. Subcloning of the 1.73-kb sequence in three fragments has pointed out that the reiteration was not homogeneous along the 1.73-kb sequence. The 1.73-kb clone was sequenced and compared with other interspersed repetitive sequences, previously described in the rodent genome, and no homology was found

    The Drosophila DSP1 gene encoding an HMG 1-like protein: genomic organization, evolutionary conservation and expression.

    No full text
    International audienceThe gene that encodes the dorsal switch protein (DSP1) has been isolated from a Drosophila melanogaster cosmid library. It is organized into seven exons and six introns. The relative position of the introns within the region coding for the high mobility group (HMG) domains are identical to those of vertebrate HMG 1/2 genes. The close similarity between DSP1 and HMG 1/2 genes strongly suggests that these genes derived from a common ancestral gene. DSP1 encodes, at least, two distinct mRNAs that differ in the length of their 5'-untranslated region and coding sequence. Detailed sequence analysis shows that alternative splicing of precursor mRNA gives rise to the two isoform mRNAs found in Drosophila cells

    Genomic organization and nucleotide sequence of a long mosaic repetitive DNA in the mouse genome.

    No full text
    International audienceA long mosaic repetitive sequence (LMRS) was isolated from a mouse liver genome library using a mouse repetitive DNA as a probe. LMRS exhibits the following features: (1) it is almost 15 kb in length; (2) it is partly organized in tandem array and frequently interrupted by other repeated sequences; and (3) it is located predominantly on the A3 band of the mouse X Chromosome (Chr). One fragment of LMRS (B6) shows restriction fragment length polymorphism (RFLP) between different mouse strains, and is thus potentially useful for mapping studies. The nucleotide sequence confirms a mosaic organization of LMRS which includes three repeats in the 5' part, showing similarity with the 5' end of L1Md-A2, and seven long A + T rich segments in the central part of the element. Our findings suggest that this sequence may have arisen from the duplication of an ancestral motif and has expanded by successive waves of amplification and invasion by foreign sequences

    Large deletions induced in the white gene of Drosophila melanogaster by the antitumoral drug cis-dichlorodiammineplatinum(II): influence of non-homologous recombination.

    No full text
    International audienceWe have studied two mutants carrying large deletions induced in the white gene of Drosophila by the antitumoral drug cisplatin. The breakpoints of the deletions were located by southern analysis and the sequences of the deletion junctions were determined. Two base-pair repeats are associated with the ends of these deletions; one of the repeats is preserved in the new junction after the deletion. DNA sequences such as A-T rich, alternating purine/pyrimidine tracts, polypurine-polypyrimidine tracts and topoisomerase I and II cleavage sites are found near the junctions. These results suggest that illegitimate recombinational processes are involved in the generation of cisplatin-induced large deletions
    corecore