59 research outputs found

    Determining significance of pairwise co-occurrences of events in bursty sequences

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Event sequences where different types of events often occur close together arise, e.g., when studying potential transcription factor binding sites (TFBS, events) of certain transcription factors (TF, types) in a DNA sequence. These events tend to occur in bursts: in some genomic regions there are more genes and therefore potentially more binding sites, while in some, possibly very long regions, hardly any events occur. Also some types of events may occur in the sequence more often than others.</p> <p>Tendencies of co-occurrence of binding sites of two or more TFs are interesting, as they may imply a co-operative role between the TFs in regulatory processes. Determining a numerical value to summarize the tendency for co-occurrence between two TFs can be done in a number of ways. However, testing for the significance of such values should be done with respect to a relevant null model that takes into account the global sequence structure.</p> <p>Results</p> <p>We extend the existing techniques that have been considered for determining the significance of co-occurrence patterns between a pair of event types under different null models. These models range from very simple ones to more complex models that take the burstiness of sequences into account. We evaluate the models and techniques on synthetic event sequences, and on real data consisting of potential transcription factor binding sites.</p> <p>Conclusion</p> <p>We show that simple null models are poorly suited for bursty data, and they yield many false positives. More sophisticated models give better results in our experiments. We also demonstrate the effect of the window size, i.e., maximum co-occurrence distance, on the significance results.</p

    The Enhancer of Trithorax and Polycomb Corto Interacts with Cyclin G in Drosophila

    Get PDF
    BACKGROUND: Polycomb (PcG) and trithorax (trxG) genes encode proteins involved in the maintenance of gene expression patterns, notably Hox genes, throughout development. PcG proteins are required for long-term gene repression whereas TrxG proteins are positive regulators that counteract PcG action. PcG and TrxG proteins form large complexes that bind chromatin at overlapping sites called Polycomb and Trithorax Response Elements (PRE/TRE). A third class of proteins, so-called "Enhancers of Trithorax and Polycomb" (ETP), interacts with either complexes, behaving sometimes as repressors and sometimes as activators. The role of ETP proteins is largely unknown. METHODOLOGY/PRINCIPAL FINDINGS: In a two-hybrid screen, we identified Cyclin G (CycG) as a partner of the Drosophila ETP Corto. Inactivation of CycG by RNA interference highlights its essential role during development. We show here that Corto and CycG directly interact and bind to each other in embryos and S2 cells. Moreover, CycG is targeted to polytene chromosomes where it co-localizes at multiple sites with Corto and with the PcG factor Polyhomeotic (PH). We observed that corto is involved in maintaining Abd-B repression outside its normal expression domain in embryos. This could be achieved by association between Corto and CycG since both proteins bind the regulatory element iab-7 PRE and the promoter of the Abd-B gene. CONCLUSIONS/SIGNIFICANCE: Our results suggest that CycG could regulate the activity of Corto at chromatin and thus be involved in changing Corto from an Enhancer of TrxG into an Enhancer of PcG

    HMG boxes of DSP1 protein interact with the Rel homology domain of transcription factors

    No full text

    DSP1, an HMG-like protein, is involved in the regulation of homeotic genes

    No full text
    The Drosophila dsp1 gene, which encodes an HMG-like protein, was originally identified in a screen for corepressors of Dorsal. Here we report that loss of dsp1 function causes homeotic transformations resembling those associated with loss of function in the homeotic genes Sex combs reduced (Scr), Ultrabithorax (Ubx), and Abdominal-B. The expression pattern of Scr is altered in dsp1 mutant imaginal discs, indicating that dsp1 is required for normal expression of this gene. Genetic interaction studies reveal that a null allele of dsp1 enhances trithorax-group gene (trx-G) mutations and partially suppresses Polycomb-group gene (Pc-G) mutations. On the contrary, overexpression of dsp1 induces an enhancement of the transformation of wings into halteres and of the extra sex comb phenotype of Pc. In addition, dsp1 male mutants exhibit a mild transformation of A4 into A5. Comparison of the chromatin structure at the Mcp locus in wild-type and dsp1 mutant embryos reveals that the 300-bp DNase I hypersensitive region is absent in a dsp1 mutant context. We propose that DSP1 protein is a chromatin remodeling factor, acting as a trx-G or a Pc-G protein depending on the considered function

    The Drosophila DSP1 gene encoding an HMG 1-like protein: genomic organization, evolutionary conservation and expression.

    No full text
    International audienceThe gene that encodes the dorsal switch protein (DSP1) has been isolated from a Drosophila melanogaster cosmid library. It is organized into seven exons and six introns. The relative position of the introns within the region coding for the high mobility group (HMG) domains are identical to those of vertebrate HMG 1/2 genes. The close similarity between DSP1 and HMG 1/2 genes strongly suggests that these genes derived from a common ancestral gene. DSP1 encodes, at least, two distinct mRNAs that differ in the length of their 5'-untranslated region and coding sequence. Detailed sequence analysis shows that alternative splicing of precursor mRNA gives rise to the two isoform mRNAs found in Drosophila cells

    DSP1, an HMG-like protein, is involved in the regulation of homeotic genes.

    No full text
    The Drosophila dsp1 gene, which encodes an HMG-like protein, was originally identified in a screen for corepressors of Dorsal. Here we report that loss of dsp1 function causes homeotic transformations resembling those associated with loss of function in the homeotic genes Sex combs reduced (Scr), Ultrabithorax (Ubx), and Abdominal-B. The expression pattern of Scr is altered in dsp1 mutant imaginal discs, indicating that dsp1 is required for normal expression of this gene. Genetic interaction studies reveal that a null allele of dsp1 enhances trithorax-group gene (trx-G) mutations and partially suppresses Polycomb-group gene (Pc-G) mutations. On the contrary, overexpression of dsp1 induces an enhancement of the transformation of wings into halteres and of the extra sex comb phenotype of Pc. In addition, dsp1 male mutants exhibit a mild transformation of A4 into A5. Comparison of the chromatin structure at the Mcp locus in wild-type and dsp1 mutant embryos reveals that the 300-bp DNase I hypersensitive region is absent in a dsp1 mutant context. We propose that DSP1 protein is a chromatin remodeling factor, acting as a trx-G or a Pc-G protein depending on the considered function
    • …
    corecore