8,252 research outputs found
Advanced optical measuring systems for measuring the properties of fluids and structures
Four advanced optical models are reviewed for the measurement of visualization of flow and structural properties. Double-exposure, diffuse-illumination, holographic interferometry can be used for three-dimensional flow visualization. When this method is combined with optical heterodyning, precise measurements of structural displacements or fluid density are possible. Time-average holography is well known as a method for displaying vibrational mode shapes, but it also can be used for flow visualization and flow measurements. Deflectometry is used to measure or visualize the deflection of light rays from collimation. Said deflection occurs because of refraction in a fluid or because of reflection from a tilted surface. The moire technique for deflectometry, when combined with optical heterodyning, permits very precise measurements of these quantities. The rainbow schlieren method of deflectometry allows varying deflection angles to be encoded with colors for visualization
Simulated electronic heterodyne recording and processing of pulsed-laser holograms
The electronic recording of pulsed-laser holograms is proposed. The polarization sensitivity of each resolution element of the detector is controlled independently to add an arbitrary phase to the image waves. This method which can be used to simulate heterodyne recording and to process three-dimensional optical images, is based on a similar method for heterodyne recording and processing of continuous-wave holograms
Analytical procedure for evaluating speckle-effect instrumentation
A general analysis suitable for developing speckle effect instruments and a simplified analysis suitable for evaluating laser speckle instrumentation are presented. The simplified analysis is summarized as a list of equations. Several sample applications are discussed
Holography through optically active windows
By using two orthogonally polarized reference beams, holograms can be recorded through stressed windows and the reconstructed virtual image will show no stress pattern. As shown analytically, the stress-pattern-free hologram is recordable for any polarization state of the object illumination. Hence, the more efficient nondepolarizing diffuser can be used in performing holography through stressed windows if two reference beams are used. Results are presented for a pair of machined polysulfone windows intended for use in a holographic flow-visualization setup in a single-stage-compressor test rig
Evaluation of diffuse-illumination holographic cinematography in a flutter cascade
Since 1979, the Lewis Research Center has examined holographic cinematography for three-dimensional flow visualization. The Nd:YAG lasers used were Q-switched, double-pulsed, and frequency-doubled, operating at 20 pulses per second. The primary subjects for flow visualization were the shock waves produced in two flutter cascades. Flow visualization was by diffuse-illumination, double-exposure, and holographic interferometry. The performances of the lasers, holography, and diffuse-illumination interferometry are evaluated in single-window wind tunnels. The fringe-contrast factor is used to evaluate the results. The effects of turbulence on shock-wave visualization in a transonic flow are discussed. The depth of field for visualization of a turbulent structure is demonstrated to be a measure of the relative density and scale of that structure. Other items discussed are the holographic emulsion, tests of coherence and polarization, effects of windows and diffusers, hologram bleaching, laser configurations, influence and handling of specular reflections, modes of fringe localization, noise sources, and coherence requirements as a function of the pulse energy. Holography and diffuse illumination interferometry are also reviewed
Measurement of fluid properties using rapid-double-exposure and time-average holographic interferometry
The holographic recording of the time history of a flow feature in three dimensions is discussed. The use of diffuse illumination holographic interferometry or the three dimensional visualization of flow features such as shock waves and turbulent eddies is described. The double-exposure and time-average methods are compared using the characteristic function and the results from a flow simulator. A time history requires a large hologram recording rate. Results of holographic cinematography of the shock waves in a flutter cascade are presented as an example. Future directions of this effort, including the availability and development of suitable lasers, are discussed
Electrical characteristics of a free-burning direct-current argon arc operating between 90 and 563 kilowatts with two types of cathodes
The electrical characteristics of a high-power, long-lived, free-burning dc argon arc are presented. Empirical formulas relating voltage to current, electrode separation, and operating pressure are given for two types of cathodes: a typical point tip cathode and a cathode with a 1.27-cm-(0.5-in.-) diameter crater in the tip. Power was varied from 90 to 563 kW. A discussion of the cathode with the crater tip is given
Cost-Effectiveness of Targeted Reemployment Bonuses
Targeting reemployment bonus offers to unemployment insurance (UI) claimants identified as most likely to exhaust benefits is estimated to reduce benefit payments. While earlier research indicated that non-targeted reemployment bonus offers would not be good public policy, in this paper we show that targeting bonus offers with profiling models similar to those in state Worker Profiling and Reemployment Services (WPRS) systems can improve their cost effectiveness. Since estimated average benefit payments do not steadily decline as the eligibility screen is gradually tightened, we find that narrow targeting is not optimal. The best candidate to emerge for a targeted reemployment bonus is a low bonus amount with a long qualification period, targeted to the half of profiled claimants most likely to exhaust their UI benefit entitlement.reemployment, bonus, UI, personal, accounts, PRA, unemployment, insurance, Upjohn, Institute, O'Leary, Decker, Wandner
Fringe localization requirements for three-dimensional flow visualization of shock waves in diffuse-illumination double-pulse holographic interferometry
A theory of fringe localization in rapid-double-exposure, diffuse-illumination holographic interferometry was developed. The theory was then applied to compare holographic measurements with laser anemometer measurements of shock locations in a transonic axial-flow compressor rotor. The computed fringe localization error was found to agree well with the measured localization error. It is shown how the view orientation and the curvature and positional variation of the strength of a shock wave are used to determine the localization error and to minimize it. In particular, it is suggested that the view direction not deviate from tangency at the shock surface by more than 30 degrees
- …