1,244 research outputs found
Recommended from our members
An improved connectionist activation function for energy minimization
Symmetric networks that are based on energy minimization, such as Boltzmann machines or Hopfield nets, are used extensively for optimization, constraint satisfaction, and approximation of NP-hard problems. Nevertheless, finding a global minimum for the energy function is not guaranteed, and even a local minimum may take an exponential number of steps. We propose an improvement to the standard activation function used for such networks. The improved algorithm guarantees that a global minimum is found in linear time for tree-like subnetworks. The algorithm is uniform and does not assume that the network is a tree. It performs no worse than the standard algorithms for any network topology. In the case where there are trees growing from a cyclic subnetwork, the new algorithm performs better than the standard algorithms by avoiding local minima along the trees and by optimizing the free energy of these trees in linear time. The algorithm is self-stabilizing for trees (cycle-free undirected graphs) and remains correct under various scheduling demons. However, no uniform protocol exists to optimize trees under a pure distributed demon and no such protocol exists for cyclic networks under central demon
Improving Connectionist Energy Minimization
Symmetric networks designed for energy minimization such as Boltzman machines
and Hopfield nets are frequently investigated for use in optimization,
constraint satisfaction and approximation of NP-hard problems. Nevertheless,
finding a global solution (i.e., a global minimum for the energy function) is
not guaranteed and even a local solution may take an exponential number of
steps. We propose an improvement to the standard local activation function used
for such networks. The improved algorithm guarantees that a global minimum is
found in linear time for tree-like subnetworks. The algorithm, called activate,
is uniform and does not assume that the network is tree-like. It can identify
tree-like subnetworks even in cyclic topologies (arbitrary networks) and avoid
local minima along these trees. For acyclic networks, the algorithm is
guaranteed to converge to a global minimum from any initial state of the system
(self-stabilization) and remains correct under various types of schedulers. On
the negative side, we show that in the presence of cycles, no uniform algorithm
exists that guarantees optimality even under a sequential asynchronous
scheduler. An asynchronous scheduler can activate only one unit at a time while
a synchronous scheduler can activate any number of units in a single time step.
In addition, no uniform algorithm exists to optimize even acyclic networks when
the scheduler is synchronous. Finally, we show how the algorithm can be
improved using the cycle-cutset scheme. The general algorithm, called
activate-with-cutset, improves over activate and has some performance
guarantees that are related to the size of the network's cycle-cutset.Comment: See http://www.jair.org/ for any accompanying file
- …