2 research outputs found

    Assessing the functional relationship between dung beetle traits and dung removal, burial, and seedling emergence

    Get PDF
    The relationship between biodiversity and ecosystem functioning is often assessed through trait diversity. However, the relationship between traits and functions is typically assumed but seldom tested. We analyze the relationship between dung beetle traits and three ecological functions: dung removal, dung burial, and seedling emergence. We set up a laboratory experiment using nine Scarabaeidae species (three endocoprids, four paracoprids, and two telecoprids). We placed a sexual pair of beetles in each experimental unit, together with a mixture of dung and seeds, and measured the amount of dung removed and buried, burial depth, and the number of emerged seedlings. Sixteen morphological traits related to dung removal and burial were measured in each individual. Results indicate that these traits were related to dung beetle performance in dung removal and burial. Most traits were positively related to dung removal, indicating the existence of a general trait syndrome associated with dung manipulation and digging capability. Dung exploitation strategies did not provide further explanatory power. Seedling emergence showed a negative but weak relationship with dung burial amount and depth and species identity. This implies that specific differences in dung–soil interface activity may be important in secondary seed dispersal by dung beetles.info:eu-repo/semantics/publishedVersio

    Dung removal increases under higher dung beetle functional diversity regardless of grazing intensification

    Full text link
    Dung removal by macrofauna such as dung beetles is an important process for nutrient cycling in pasturelands. Intensification of farming practices generally reduces species and functional diversity of terrestrial invertebrates, which may negatively affect ecosystem services. Here, we investigate the effects of cattle-grazing intensification on dung removal by dung beetles in field experiments replicated in 38 pastures around the world. Within each study site, we measured dung removal in pastures managed with low- and high-intensity regimes to assess between-regime differences in dung beetle diversity and dung removal, whilst also considering climate and regional variations. The impacts of intensification were heterogeneous, either diminishing or increasing dung beetle species richness, functional diversity, and dung removal rates. The effects of beetle diversity on dung removal were more variable across sites than within sites. Dung removal increased with species richness across sites, while functional diversity consistently enhanced dung removal within sites, independently of cattle grazing intensity or climate. Our findings indicate that, despite intensified cattle stocking rates, ecosystem services related to decomposition and nutrient cycling can be maintained when a functionally diverse dung beetle community inhabits the human-modified landscape
    corecore