41 research outputs found

    An Educational Program for Blind Infants

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/68635/2/10.1177_002246696900300201.pd

    Metabolic variation in natural populations of wild yeast

    Get PDF
    Ecological diversification depends on the extent of genetic variation and on the pattern of covariation with respect to ecological opportunities. We investigated the pattern of utilization of carbon substrates in wild populations of budding yeast Saccharomyces paradoxus. All isolates grew well on a core diet of about 10 substrates, and most were also able to grow on a much larger ancillary diet comprising most of the 190 substrates we tested. There was substantial genetic variation within each population for some substrates. We found geographical variation of substrate use at continental, regional, and local scales. Isolates from Europe and North America could be distinguished on the basis of the pattern of yield across substrates. Two geographical races at the North American sites also differed in the pattern of substrate utilization. Substrate utilization patterns were also geographically correlated at local spatial scales. Pairwise genetic correlations between substrates were predominantly positive, reflecting overall variation in metabolic performance, but there was a consistent negative correlation between categories of substrates in two cases: between the core diet and the ancillary diet, and between pentose and hexose sugars. Such negative correlations in the utilization of substrate from different categories may indicate either intrinsic physiological tradeā€offs for the uptake and utilization of substrates from different categories, or the accumulation of conditionally neutral mutations. Divergence in substrate use accompanies genetic divergence at all spatial scales in S. paradoxus and may contribute to race formation and speciation

    Glycogen synthesis in muscle fibers during active recovery from intense exercise

    No full text
    KIF1A is a neuron-specific motor protein that plays important roles in cargo transport along neurites. Recessive mutations in KIF1A were previously described in families with spastic paraparesis or sensory and autonomic neuropathy type-2. Here, we report 11 heterozygous de novo missense mutations (p.S58L, p.T99M, p.G102D, p.V144F, p.R167C, p.A202P, p.S215R, p.R216P, p.L249Q, p.E253K, and p.R316W) in KIF1A in 14 individuals, including two monozygotic twins. Two mutations (p.T99M and p.E253K) were recurrent, each being found in unrelated cases. All these de novo mutations are located in the motor domain (MD) of KIF1A. Structural modeling revealed that they alter conserved residues that are critical for the structure and function of the MD. Transfection studies suggested that at least five of these mutations affect the transport of the MD along axons. Individuals with de novo mutations in KIF1A display a phenotype characterized by cognitive impairment and variable presence of cerebellar atrophy, spastic paraparesis, optic nerve atrophy, peripheral neuropathy, and epilepsy. Our findings thus indicate that de novo missense mutations in the MD of KIF1A cause a phenotype that overlaps with, while being more severe, than that associated with recessive mutations in the same gene
    corecore