78 research outputs found

    Three dimensional finite element ablative thermal response analysis applied to heatshield penetration design

    Get PDF
    Heatshield design and analysis has traditionally been a decoupled process, the designer creates the geometry generally without knowledge about how the design variables affect the thermostructural response or how the system will perform under off nominal conditions. Heatshield thermal and structural response analyses are generally performed as separate tasks where the analysts size their respective components and feedback their results to the designer who is left to interpret them. The analysts are generally unable to provide guidance in terms of how the design variables can be modified to meet geometric constraints and not exceed the thermal or structural design specifications. In general, the thermal response analysis of ablative thermal protection systems has traditionally been performed using a one-dimensional finite difference calculation. The structural analyses are generally one, two, or three-dimensional finite element calculations. In this dissertation, the governing differential equations for ablative thermal response are solved in three-dimensions using the finite element method. Darcy' Law is used to model the flow of pyrolysis gas through the ablative material. The three-dimensional governing differential equations for Darcy flow are solved using the finite element method as well. Additionally, the equations for linear elasticity are solved by the finite element method for the thermal stress using temperatures directly from the thermal response calculations. This dissertation also links the analysis of thermal protection systems to their design. The link to design comes from understanding the variation in the thermostructural response over the range of the design variables. Material property sensitivities are performed and an optimum design is determined based on a deterministic analysis minimizing the design specification of bondline temperature subject to appropriate constraints. A Monte Carlo simulation is performed on the optimum design to determine the probability of exceeding the design specifications. The design methodology is demonstrated on the Orion Crew Exploration Vehicle's compression pad design.Ph.D.Committee Chair: Dr. Robert D. Braun; Committee Member: Dr. David M. Schuster; Committee Member: Dr. Stephen M. Ruffin; Committee Member: Dr. Vitali Volovoi; Committee Member: Mr. Bernie Lau

    Probabilistic Thermal Analysis During Mars Reconnaissance Orbiter Aerobraking

    Get PDF
    A method for performing a probabilistic thermal analysis during aerobraking has been developed. The analysis is performed on the Mars Reconnaissance Orbiter solar array during aerobraking. The methodology makes use of a response surface model derived from a more complex finite element thermal model of the solar array. The response surface is a quadratic equation which calculates the peak temperature for a given orbit drag pass at a specific location on the solar panel. Five different response surface equations are used, one of which predicts the overall maximum solar panel temperature, and the remaining four predict the temperatures of the solar panel thermal sensors. The variables used to define the response surface can be characterized as either environmental, material property, or modeling variables. Response surface variables are statistically varied in a Monte Carlo simulation. The Monte Carlo simulation produces mean temperatures and 3 sigma bounds as well as the probability of exceeding the designated flight allowable temperature for a given orbit. Response surface temperature predictions are compared with the Mars Reconnaissance Orbiter flight temperature data

    Autonomous Aerobraking: Thermal Analysis and Response Surface Development

    Get PDF
    A high-fidelity thermal model of the Mars Reconnaissance Orbiter was developed for use in an autonomous aerobraking simulation study. Response surface equations were derived from the high-fidelity thermal model and integrated into the autonomous aerobraking simulation software. The high-fidelity thermal model was developed using the Thermal Desktop software and used in all phases of the analysis. The use of Thermal Desktop exclusively, represented a change from previously developed aerobraking thermal analysis methodologies. Comparisons were made between the Thermal Desktop solutions and those developed for the previous aerobraking thermal analyses performed on the Mars Reconnaissance Orbiter during aerobraking operations. A variable sensitivity screening study was performed to reduce the number of variables carried in the response surface equations. Thermal analysis and response surface equation development were performed for autonomous aerobraking missions at Mars and Venus

    Three-Dimensional Finite Element Ablative Thermal Response and Thermostructural Design of Thermal Protection Systems

    Get PDF
    A finite element ablation and thermal response program is presented for simulation of three-dimensional transient thermostructural analysis. The three-dimensional governing differential equations and finite element formulation are summarized. A novel probabilistic design methodology for thermal protection systems is presented. The design methodology is an eight step process beginning with a parameter sensitivity study and is followed by a deterministic analysis whereby an optimum design can determined. The design process concludes with a Monte Carlo simulation where the probabilities of exceeding design specifications are estimated. The design methodology is demonstrated by applying the methodology to the carbon phenolic compression pads of the Crew Exploration Vehicle. The maximum allowed values of bondline temperature and tensile stress are used as the design specifications in this study

    Ablative Thermal Response Analysis Using the Finite Element Method

    Get PDF
    A review of the classic techniques used to solve ablative thermal response problems is presented. The advantages and disadvantages of both the finite element and finite difference methods are described. As a first step in developing a three dimensional finite element based ablative thermal response capability, a one dimensional computer tool has been developed. The finite element method is used to discretize the governing differential equations and Galerkin's method of weighted residuals is used to derive the element equations. A code to code comparison between the current 1-D tool and the 1-D Fully Implicit Ablation and Thermal Response Program (FIAT) has been performed

    Two-Dimensional Finite Element Ablative Thermal Response Analysis of an Arcjet Stagnation Test

    Get PDF
    The finite element ablation and thermal response (FEAtR, hence forth called FEAR) design and analysis program simulates the one, two, or three-dimensional ablation, internal heat conduction, thermal decomposition, and pyrolysis gas flow of thermal protection system materials. As part of a code validation study, two-dimensional axisymmetric results from FEAR are compared to thermal response data obtained from an arc-jet stagnation test in this paper. The results from FEAR are also compared to the two-dimensional axisymmetric computations from the two-dimensional implicit thermal response and ablation program under the same arcjet conditions. The ablating material being used in this arcjet test is phenolic impregnated carbon ablator with an LI-2200 insulator as backup material. The test is performed at the NASA, Ames Research Center Interaction Heating Facility. Spatially distributed computational fluid dynamics solutions for the flow field around the test article are used for the surface boundary conditions

    Thermal Modeling of the Mars Reconnaissance Orbiter's Solar Panel and Instruments during Aerobraking

    Get PDF
    The Mars Reconnaissance Orbiter (MRO) launched on August 12, 2005 and started aerobraking at Mars in March 2006. During the spacecraft s design phase, thermal models of the solar panels and instruments were developed to determine which components would be the most limiting thermally during aerobraking. Having determined the most limiting components, thermal limits in terms of heat rate were established. Advanced thermal modeling techniques were developed utilizing Thermal Desktop and Patran Thermal. Heat transfer coefficients were calculated using a Direct Simulation Monte Carlo technique. Analysis established that the solar panels were the most limiting components during the aerobraking phase of the mission

    Thermal Model Correlation for Mars Reconnaissance Orbiter

    Get PDF
    The Mars Reconnaissance Orbiter (MRO) launched on August 12, 2005 and began aerobraking at Mars in March 2006. In order to save propellant, MRO used aerobraking to modify the initial orbit at Mars. The spacecraft passed through the atmosphere briefly on each orbit; during each pass the spacecraft was slowed by atmospheric drag, thus lowering the orbit apoapsis. The largest area on the spacecraft, most affected by aeroheating, was the solar arrays. A thermal analysis of the solar arrays was conducted at NASA Langley Research Center to simulate their performance throughout the entire roughly 6-month period of aerobraking. A companion paper describes the development of this thermal model. This model has been correlated against many sets of flight data. Several maneuvers were performed during the cruise to Mars, such as thruster calibrations, which involve large abrupt changes in the spacecraft orientation relative to the sun. The data obtained from these maneuvers allowed the model to be well-correlated with regard to thermal mass, conductive connections, and solar response well before arrival at the planet. Correlation against flight data for both in-cruise maneuvers and drag passes was performed. Adjustments made to the model included orientation during the drag pass, solar flux, Martian surface temperature, through-array resistance, aeroheating gradient due to angle of attack, and aeroheating accommodation coefficient. Methods of correlation included comparing the model to flight temperatures, slopes, temperature deltas between sensors, and solar and planet direction vectors. Correlation and model accuracy over 400 aeroheating drag passes were determined, with overall model accuracy better than 5 C

    Thermal Analysis Methods for Aerobraking Heating

    Get PDF
    As NASA begins exploration of other planets, a method of non-propulsively slowing vehicles at the planet, aerobraking, may become a valuable technique for managing vehicle design mass and propellant. An example of this is Mars Reconnaissance Orbiter (MRO), which will launch in late 2005 and reach Mars in March of 2006. In order to save propellant, MRO will use aerobraking to modify the initial orbit at Mars. The spacecraft will dip into the atmosphere briefly on each orbit, and during the drag pass, the atmospheric drag on the spacecraft will slow it, thus lowering the orbit apoapsis. The largest area on the spacecraft, and that most affected by the heat generated during the aerobraking process, is the solar arrays. A thermal analysis of the solar arrays was conducted at NASA Langley, to simulate their performance throughout the entire roughly 6-month period of aerobraking. Several interesting methods were used to make this analysis more rapid and robust. Two separate models were built for this analysis, one in Thermal Desktop for radiation and orbital heating analysis, and one in MSC.Patran for thermal analysis. The results from the radiation model were mapped in an automated fashion to the Patran thermal model that was used to analyze the thermal behavior during the drag pass. A high degree of automation in file manipulation as well as other methods for reducing run time were employed, since toward the end of the aerobraking period the orbit period is short, and in order to support flight operations the runs must be computed rapidly. All heating within the Patran Thermal model was combined in one section of logic, such that data mapped from the radiation model and aeroheating model, as well as skin temperature effects on the aeroheating and surface radiation, could be incorporated easily. This approach calculates the aeroheating at any given node, based on its position and temperature as well as the density and velocity at that trajectory point. Run times on several different processors, computer hard drives, and operating systems (Windows versus Linux) were evaluated

    Autonomous Aerobraking Using Thermal Response Surface Analysis

    Get PDF
    Aerobraking is a proven method of significantly increasing the science payload that can be placed into low Mars orbits when compared to an all propulsive capture. However, the aerobraking phase is long and has mission cost and risk implications. The main cost benefit is that aerobraking permits the use of a smaller and cheaper launch vehicle, but additional operational costs are incurred during the long aerobraking phase. Risk is increased due to the repeated thermal loading of spacecraft components and the multiple attitude and propulsive maneuvers required for successful aerobraking. Both the cost and risk burdens can be significantly reduced by automating the aerobraking operations phase. All of the previous Mars orbiter missions that have utilized aerobraking have increasingly relied on onboard calculations during aerobraking. Even though the temperature of spacecraft components has been the limiting factor, operational methods have relied on using a surrogate variable for mission control. This paper describes several methods, based directly on spacecraft component maximum temperature, for autonomously predicting the subsequent aerobraking orbits and prescribing apoapsis propulsive maneuvers to maintain the spacecraft within specified temperature limits. Specifically, this paper describes the use of thermal response surface analysis in predicting the temperature of the spacecraft components and the corresponding uncertainty in this temperature prediction
    corecore