61 research outputs found

    Synthesis and Characterization of Ferroelectrics

    Get PDF
    "Ferroelectrics belong to one of the most studied groups of materials in terms of research and applications. Apart from their foremost property (the ferroelectricity), these materials also display other numerous attractive properties such as piezoelectricity, pyroelectricity, electrocaloric and electro-optic effects, etc., which designate them as multifunctional materials. Therefore, these materials are suitable for a wide range of applications ranging from effective sensors, transducers and actuators to optical and memory devices. Since the discovery of ferroelectricity in Rochelle salt in 1920 by Valasek [1], numerous applications using such effects have been developed. In addition, ferroelectrics, and other ferroics, exhibit a highly non-linear response, which is changeable rather than fixed, mimicking, to a large extent, biological systems [2]. Consequently, this kind of behavior is qualified as “smart” and respective systems are termed as “smart materials” [2]. This Special Issue on “Synthesis and Characterization of Ferroelectrics” covers a broad range of physical properties of ferroelectrics, their technological aspects and contains a mixture of review article and original contributions [...]"

    Precession electron diffraction studies of SrxBa1-xNb2O6 and CaxBa1-xNb2O6 single crystals

    Get PDF
    Crystal structures of two single crystals SrxBa1xNb2O6 and CaxBa1xNb2O6 have been reinvestigated using automated electron diffraction tomography method with beam precession. 3D reciprocal space has been reconstructed based on recorded tilt series. For both samples the crystal structure was refined and the tetragonal symmetry with space group P4bm was confirmed. The three dimensional reciprocal space allowed to observe and to study satellite reflections in both materials

    Phonons and Relaxations in Unfilled Tetragonal Tungsten-Bronzes

    Get PDF
    The lead-free unfilled tetragonal tungsten-bronzes SBN and CBN are investigated by Raman, infrared and high-frequency dielectric spectroscopies. The substitution in the different channels affects phonons as well as relaxations. Relaxations in SBN show similar qualitative behaviour on increasing Sr content and relaxor behaviour, but for the extreme relaxor samples all characteristic frequencies are higher with stronger contribution to the permittivity in the GHz-THz range is stronger. The presence of a soft anharmonic central mode in the THz range together with the slowing down of a relaxation from GHz to MHz ranges reveals the coexistence of displacive and order-disorder scenarios for the ferroelectric phase transition in this family

    A piezoresponse force microscopy study of CaxBa1-xNb2O6 single crystals

    Get PDF
    Polar structures of CaxBa1-xNb2O6 (CBN100x) single crystals were investigated using piezoresponse force microscopy. Increasing Ca content results in decreasing domain size and enhancement of the polar disorder. For the composition with x = 0.32 the characteristic domain size is similar to that reported for relaxor Sr0.61Ba0.39Nb2O6 (SBN61). However, decay of an artificial macroscopic domain in CBN32 takes place below the macroscopic transition temperature, contrary to SBN61, where random fields stabilize it above the transition temperature. We can conclude that CBN with 0.26 ≤ x ≤ 0.32 does not display classical relaxor behavior and might be considered as a disordered ferroelectric

    Electric field and aging effects of uniaxial ferroelectrics Sr x Ba1-x Nb2O6 probed by Brillouin scattering

    Get PDF
    This study was supported in part by the Marubun Research Promotion Foundation and JSPS KAKENHI Grant Number JP17K05030.Static and dynamic heterogeneity of disordered system is one of the current topics in materials science. In disordered ferroelectric materials with random fields, dynamic polar nanoregions (PNRs) appear at Burns temperature and freeze into nanodomain state below Curie temperature (T C). This state is very sensitive to external electric field and aging by which it gradually switches into macrodomain state. However, the role of PNRs in such states below T C is still a puzzling issue of materials science. Electric field and aging effects of uniaxial ferroelectric Sr x Ba1-x Nb2O6 (x = 0.40, SBN40) single crystals were studied using Brillouin scattering to clarify the critical nature of PNRs in domain states below T C. On field heating, a broad anomaly in longitudinal acoustic (LA) velocity at low temperature region was due to an incomplete alignment of nanodomains caused by the interaction between PNRs. A sharp anomaly near T C was attributed to the complete switching of nanodomain to macrodomain state owing to the lack of interaction among PNRs. After isothermal aging below T C, the noticeable increase of LA velocity was observed. It was unaffected by cyclic temperature measurements up to T C, and recovered to initial state outside of a narrow temperature range above and below aging temperature.Japan Society for the Promotion of Scienc

    Conoscopic study of strontium-barium niobate single crystals

    Get PDF
    Optically transparent single crystals of strontium-barium niobate, Sr xBa1-xNb2O6, of different compositions (x 0.26...0.7) were examined with the aid of conoscopic light interference figures. A regular change of the isochrome concentric ring number and diameters consistent with the temperature variation of the value of birefringence is demonstrated by direct observations of polar cuts of optically uniaxial samples. Anomalous violations of the conventional (uniaxial) interference patterns occur occasionaly in some samples being indicative of the existence of biaxial trait in their behaviour even though no voltage is applied. These features may depend on annealing treatments at elevated temperatures. The results of the study show that conoscopic images may serve as a sensitive indicator of the structural state of SBN crystals related to the effects of stress-induced change of optical anisotropy and temperature dependent birefringence parameters

    SrTiO3—Glimpses of an Inexhaustible Source of Novel Solid State Phenomena

    Get PDF
    The purpose of this selective review is primarily to demonstrate the large versatility of the insulating quantum paraelectric perovskite SrTiO3 explained in “Introduction” part, and “Routes of SrTiO3 toward ferroelectricity and other collective states” part. Apart from ferroelectricity under various boundary conditions, it exhibits regular electronic and superconductivity via doping or external fields and is capable of displaying diverse coupled states. “Magnetoelectric multiglass (Sr,Mn)TiO3” part, deals with mesoscopic physics of the solid solution SrTiO3:Mn2+. It is at the origin of both polar and spin cluster glass forming and is altogether a novel multiferroic system. Independent transitions at different glass temperatures, power law dynamic criticality, divergent third-order susceptibilities, and higher order magneto-electric interactions are convincing fingerprints

    Temperature Effect on the Stability of the Polarized State Created by Local Electric Fields in Strontium Barium Niobate Single Crystals

    Get PDF
    The stability of ferroelectric domain patterns at the nanoscale has been a topic of much interest for many years. We investigated the relaxation of the polarized state created by application of a local electric field using a conductive tip of a scanning probe microscope for the model uniaxial relaxor system SrxBa1−xNb2O6 (SBN) in its pure and Ce-doped form. The temporal relaxation of the induced PFM contrast was measured at various temperatures. The average value of the induced contrast decreases during heating for all investigated crystals. Below the freezing temperature the induced state remains stable after an initial relaxation. Above the freezing temperature the induced state is unstable and gradually decays with time. The stability of the induced state is strongly affected by the measuring conditions, so continuous scanning results in a faster decay of the poled domain. The obtained effects are attributed to a decrease of the induced polarization and backswitching of the polarized area under the action of the depolarization field

    Interfacial Polarization Phenomena in Compressed Nanowires of SbSI

    Get PDF
    The systematic studies of the extrinsic Maxwell–Wagner–Sillars polarization process in compressed antimony sulfoiodide (SbSI) nanowires are carried out by dielectric spectroscopy. The dielectric response is studied in temperature (100 T 350) K and frequency (103 f 106) Hz ranges. Dielectric functions commonly used for the analysis of dielectric spectra related to intrinsic polarization processes were applied in the elaboration of experimental data. It was found that the respective “semi-circles” in the Cole–Cole-type plots display a characteristic pear-like shape for the ferroelectric phase. On the other hand, the data for the paraelectric phase form symmetrical arcs. This response is effectively parametrized using the experimental Cole–Davidson and Cole–Cole functions fitted to the data obtained for the ferroelectric and paraelectric phases, respectively. It is deduced that the particular shape of spectra in the ferroelectric phase is due to spontaneous polarization, which is responsible for an asymmetric broadening of relaxation functions related to the interfacial polarization
    corecore