964 research outputs found

    Spin dynamics and magnetic-field-induced polarization of excitons in ultrathin GaAs/AlAs quantum wells with indirect band gap and type-II band alignment

    Full text link
    The exciton spin dynamics are investigated both experimentally and theoretically in two-monolayer-thick GaAs/AlAs quantum wells with an indirect band gap and a type-II band alignment. The magnetic-field-induced circular polarization of photoluminescence, PcP_c, is studied as function of the magnetic field strength and direction as well as sample temperature. The observed nonmonotonic behaviour of these functions is provided by the interplay of bright and dark exciton states contributing to the emission. To interpret the experiment, we have developed a kinetic master equation model which accounts for the dynamics of the spin states in this exciton quartet, radiative and nonradiative recombination processes, and redistribution of excitons between these states as result of spin relaxation. The model offers quantitative agreement with experiment and allows us to evaluate, for the studied structure, the heavy-hole gg factor, ghh=+3.5g_{hh}=+3.5, and the spin relaxation times of electron, τse=33 μ\tau_{se} = 33~\mus, and hole, τsh=3 μ\tau_{sh} = 3~\mus, bound in the exciton.Comment: 17 pages, 16 figure

    Restoring betatron phase coherence in a beam-loaded laser-wakefield accelerator

    Full text link
    Matched beam loading in laser wakefield acceleration (LWFA), characterizing the state of flattening of the acceleration electric field along the bunch, leads to the minimization of energy spread at high bunch charges. Here, we demonstrate by independently controlling injected charge and acceleration gradients, using the self-truncated ionization injection scheme, that minimal energy spread coincides with a reduction of the normalized beam divergence. With the simultaneous confirmation of a constant beam radius at the plasma exit, deduced from betatron radiation spectroscopy, we attribute this effect to the reduction of chromatic betatron decoherence. Thus, beam loaded LWFA enables highest longitudinal and transverse phase space densities

    Structural Effects of Ammonia Binding to the Mn_4CaO_5 Cluster of Photosystem II

    Get PDF
    The Mn_4CaO_5 oxygen-evolving complex (OEC) of photosystem II catalyzes the light-driven oxidation of two substrate waters to molecular oxygen. ELDOR-detected NMR along with computational studies indicated that ammonia, a substrate analogue, binds as a terminal ligand to the Mn4A ion trans to the O5 μ_4 oxido bridge. Results from electron spin echo envelope modulation (ESEEM) spectroscopy confirmed this and showed that ammonia hydrogen bonds to the carboxylate side chain of D1-Asp61. Here we further probe the environment of OEC with an emphasis on the proximity of exchangeable protons, comparing ammonia-bound and unbound forms. Our ESEEM and electron nuclear double resonance (ENDOR) results indicate that ammonia substitutes for the W1 terminal water ligand without significantly altering the electronic structure of the OEC

    Spin diffusion in the Mn2+ ion system of II-VI diluted magnetic semiconductor heterostructures

    Full text link
    The magnetization dynamics in diluted magnetic semiconductor heterostructures based on (Zn,Mn)Se and (Cd,Mn)Te has been studied experimentally by optical methods and simulated numerically. In the samples with nonhomogeneous magnetic ion distribution this dynamics is contributed by spin-lattice relaxation and spin diffusion in the Mn spin system. The spin diffusion coefficient of 7x10^(-8) cm^2/s has been evaluated for Zn(0.99)Mn(0.01)Se from comparison of experimental and numerical results. Calculations of the giant Zeeman splitting of the exciton states and the magnetization dynamics in the ordered alloys and parabolic quantum wells fabricated by the digital growth technique show perfect agreement with the experimental data. In both structure types the spin diffusion has an essential contribution to the magnetization dynamics.Comment: 12 pages, 11 figure

    Influence of the heterointerface sharpness on exciton recombination dynamics in an ensemble of (In,Al)As/AlAs quantum dots with indirect band-gap

    Full text link
    The dynamics of exciton recombination in an ensemble of indirect band-gap (In,Al)As/AlAs quantum dots with type-I band alignment is studied. The lifetime of confined excitons which are indirect in momentum-space is mainly influenced by the sharpness of the heterointerface between the (In,Al)As quantum dot and the AlAs barrier matrix. Time-resolved photoluminescence experiments and theoretical model calculations reveal a strong dependence of the exciton lifetime on the thickness of the interface diffusion layer. The lifetime of excitons with a particular optical transition energy varies because this energy is obtained for quantum dots differing in size, shape and composition. The different exciton lifetimes, which result in photoluminescence with non-exponential decay obeying a power-law function, can be described by a phenomenological distribution function, which allows one to explain the photoluminescence decay with one fitting parameter only.Comment: 10 pages, 7 figure

    A treatment planning intercomparison of proton and intensity modulated photon radiotherapy.

    Full text link
    peer reviewedAbstract Purpose: A comparative treatment planning study has been undertaken between standard photon delivery techniques,b intensity modulated photon methods and spot scanned protons in order to investigate the merits and limitations of each of these treatment approaches. Methods: Plans for each modality were performed using CT scans and planning information for nine patients with varying indications and lesion sites and the results have been analysed using a variety of dose and volume based parameters. Results: Over all cases, it is predicted that the use of protons could lead to a reduction of the total integral dose by a factor three compared to standard photon techniques and a factor two compared to IM photon plans. In addition, in all but one Organ at Risk (OAR) for one case, protons are predicted to reduce both mean OAR dose and the irradiated volume at the 50% mean target dose level compared to both photon methods. However, when considering the volume of an OAR irradiated to 70% or more of the target dose, little difference could be shown between proton and intensity modulated photon plans. On comparing the magnitude of dose hot spots in OARs resulting from the proton and IM photon plans, more variation was observed, and the ranking of the plans was then found to be case and OAR dependent. Conclusions: The use of protons has been found to reduce the medium to low dose load (below about 70% of the target dose) to OARs and all non-target tissues compared to both standard and inversely planned photons, but that the use of intensity modulated photons can result in similar levels of high dose conformation to that afforded by protons. However, the introduction of inverse planning methods for protons is necessary before general conclusions on the relative efficacy of photons and protons can be drawn

    Detailed analysis of the cell-inactivation mechanism by accelerated protons and light ions

    Full text link
    Published survival data for V79 cells irradiated by monoenergetic protons, helium-3, carbon, and oxygen ions and for CHO cells irradiated by carbon ions have been analyzed using the probabilistic two-stage model of cell inactivation. Three different classes of DNA damages formed by traversing particles have been distinguished, namely severe single-track damages which might lead to cell inactivation directly, less severe damages where cell inactivation is caused by their combinations, and damages of negligible severity that can be repaired easily. Probabilities of single ions to form these damages have been assessed in dependence on their linear energy transfer (LET) values. Damage induction probabilities increase with atomic number and LET. While combined damages play crucial role at lower LET values, single-track damages dominate in high-LET regions. The yields of single-track lethal damages for protons have been compared with the Monte Carlo estimates of complex DNA lesions, indicating that lethal events correlate well with complex DNA double-strand breaks. The decrease in the single-track damage probability for protons of LET above approx. 30 keV/μ\mum, suggested by limited experimental evidence, is discussed, together with the consequent differences in the mechanisms of biological effects between protons and heavier ions. Applications of the results in hadrontherapy treatment planning are outlined.Comment: submitted to Physics in Medicine and Biolog
    corecore