38 research outputs found

    Prognosis of breast cancer molecular subtypes in routine clinical care: A large prospective cohort study

    Get PDF
    Background: In Germany, most breast cancer patients are treated in specialized breast cancer units (BCU), which are certified, and routinely monitored. Herein, we evaluate up-to-date oncological outcome of breast cancer (BC) molecular subtypes in routine clinical care of a specialized BCU. Methods: The study was a prospectively single-center cohort study of 4102 female cases with primary, unilateral, non-metastatic breast cancer treated between 01 January 2003 and 31 December 2012. The five routinely used molecular subtypes (Luminal A-like, Luminal B/HER2 negative-like, Luminal B/HER2 positive-like, HER2-type, Triple negative) were analyzed. The median follow-up time of the whole cohort was 55 months. We calculated estimates for local control rate (LCR), disease-free survival (DFS), distant disease-free survival (DDFS), overall survival (OS), and relative overall survival (ROS). Results: Luminal A-like tumors were the most frequent (44.7%) and showed the best outcome with LCR of 99.1% (95% CI 98.5; 99.7), OS of 95.1% (95% CI 93.7; 96.5), and ROS of 100.0% (95% CI 98.5; 101.5). Triple negative tumors (12.3%) presented the poorest outcome with LCR of 89.6% (95% CI 85.8; 93.4), OS of 78.5% (95% CI 73.8; 83.3), and ROS of 80.1% (95% CI 73.8; 83.2). Conclusions: Patients with a favorable subtype can expect an OS above 95% and an LCR of almost 100% over 5 years. On the other hand the outcome of patients with HER2 and Triple negative subtypes remains poor, thus necessitating more intensified research and care

    Deep-learning-based synthesis of post-contrast T1-weighted MRI for tumour response assessment in neuro-oncology:a multicentre, retrospective cohort study

    Get PDF
    International audienceBackground Gadolinium-based contrast agents (GBCAs) are widely used to enhance tissue contrast during MRI scans and play a crucial role in the management of patients with cancer. However, studies have shown gadolinium deposition in the brain after repeated GBCA administration with yet unknown clinical significance. We aimed to assess the feasibility and diagnostic value of synthetic post-contrast T1-weighted MRI generated from pre-contrast MRI sequences through deep convolutional neural networks (dCNN) for tumour response assessment in neuro-oncology. Methods In this multicentre, retrospective cohort study, we used MRI examinations to train and validate a dCNN for synthesising post-contrast T1-weighted sequences from pre-contrast T1-weighted, T2-weighted, and fluid-attenuated inversion recovery sequences. We used MRI scans with availability of these sequences from 775 patients with glioblastoma treated at Heidelberg University Hospital, Heidelberg, Germany (775 MRI examinations); 260 patients who participated in the phase 2 CORE trial (1083 MRI examinations, 59 institutions); and 505 patients who participated in the phase 3 CENTRIC trial (3147 MRI examinations, 149 institutions). Separate training runs to rank the importance of individual sequences and (for a subset) diffusion-weighted imaging were conducted. Independent testing was performed on MRI data from the phase 2 and phase 3 EORTC-26101 trial (521 patients, 1924 MRI examinations, 32 institutions). The similarity between synthetic and true contrast enhancement on post-contrast T1-weighted MRI was quantified using the structural similarity index measure (SSIM). Automated tumour segmentation and volumetric tumour response assessment based on synthetic versus true post-contrast T1-weighted sequences was performed in the EORTC-26101 trial and agreement was assessed with Kaplan-Meier plots. Interpretation Generating synthetic post-contrast T1-weighted MRI from pre-contrast MRI using dCNN is feasible and quantification of the contrast-enhancing tumour burden from synthetic post-contrast T1-weighted MRI allows assessment of the patient's response to treatment with no significant difference by comparison with true post-contrast T1-weighted sequences with administration of GBCAs. This finding could guide the application of dCNN in radiology to potentially reduce the necessity of GBCA administration

    Acute Toxicity and Early Oncological Outcomes After Intraoperative Electron Radiotherapy (IOERT) as Boost Followed by Whole Breast Irradiation in 157 Early Stage Breast Cancer Patients—First Clinical Results From a Single Center

    Get PDF
    Introduction: Breast conserving surgery (BCS) followed by postoperative whole breast irradiation (WBI) is the current standard of care for early stage breast cancer patients. Boost to the tumor bed is recommended for patients with a higher risk of local recurrence and may be applied with different techniques. Intraoperative electron radiotherapy (IOERT) offers several advantages compared to other techniques, like direct visualization of the tumor bed, better skin sparing, less inter- and intrafractional motion, but also radiobiological effects may be beneficial. Objective of this retrospective analysis of IOERT as boost in breast cancer patients was to assess acute toxicity and early oncological outcomes.Material and Methods: All patients, who have been irradiated between 11/2014 and 01/2018 with IOERT during BCS were analyzed. IOERT was applied using the mobile linear accelerator Mobetron with a total dose of 10 Gy, prescribed to the 90% isodose. After ensured woundhealing, WBI followed with normofractionated or hypofractionated regimens. Patient reports, including diagnostic examinations and toxicity were analyzed after surgery and 6–8 weeks after WBI. Overall survival, distant progression-free survival, in-breast and contralateral breast local progression-free survival were calculated using the Kaplan-Meier method. Furthermore, recurrence patterns were assessed.Results: In total, 157 patients with a median age of 57 years were evaluated. Postoperative adverse events were mild with seroma and hematoma grade 1–2 in 26% and grade 3 in 0.6% of the patients. Wound infections grade 2–3 occurred in 2.2% and wound dehiscence grade 1–2 in 1.9% of the patients. Six to eight weeks after WBI radiotherapy-dependent acute dermatitis grade 1–2 was most common in 90.9% of the patients. Only 4.6% of the patients suffered from dermatitis grade 3. No grade 4 toxicities were documented after surgery or WBI. 2- and 3-year overall survival and distant progression-free survival, were 97.5 and 93.6, and 0.7 and 2.8%, respectively. In-breast recurrence and contralateral breast cancer rates after 3 years were 1.9 and 2.8%, respectively.Conclusion: IOERT boost during BCS is a safe treatment option with low acute toxicity. Short-term recurrence rates are comparable to previously published data and emphasize, that IOERT as boost is an effective treatment

    Genetic landscape of congenital insensitivity to pain and hereditary sensory and autonomic neuropathies

    Get PDF
    Congenital insensitivity to pain (CIP) and hereditary sensory and autonomic neuropathies (HSAN) are clinically and genetically heterogeneous disorders exclusively or predominantly affecting the sensory and autonomic neurons. Due to the rarity of the diseases and findings based mainly on single case reports or small case series, knowledge about these disorders is limited. Here, we describe the molecular workup of a large international cohort of CIP/HSAN patients including patients from normally under-represented countries. We identify 80 previously unreported pathogenic or likely pathogenic variants in a total of 73 families in the >20 known CIP/HSAN-associated genes. The data expand the spectrum of disease-relevant alterations in CIP/HSAN, including novel variants in previously rarely recognized entities such as ATL3-, FLVCR1- and NGF-associated neuropathies and previously under-recognized mutation types such as larger deletions. In silico predictions, heterologous expression studies, segregation analyses and metabolic tests helped to overcome limitations of current variant classification schemes that often fail to categorize a variant as disease-related or benign. The study sheds light on the genetic causes and disease-relevant changes within individual genes in CIP/HSAN. This is becoming increasingly important with emerging clinical trials investigating subtype or gene-specific treatment strategies

    Impact of Single Dose Photons and Carbon Ions on Perfusion and Vascular Permeability: A Dynamic Contrast-Enhanced MRI Pilot Study in the Anaplastic Rat Prostate Tumor R3327-AT1

    No full text
    We collected initial quantitative information on the effects of high-dose carbon (12C) ions compared to photons on vascular damage in anaplastic rat prostate tumors, with the goal of elucidating differences in response to high-LET radiation, using dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI). Syngeneic R3327-AT1 rat prostate tumors received a single dose of either 16 or 37 Gy 12C ions or 37 or 85 Gy 6 MV photons (iso-absorbed and iso-effective doses, respectively). The animals underwent DCE-MRI prior to, and on days 3, 7, 14 and 21 postirradiation. The extended Tofts model was used for pharmacokinetic analysis. At day 21, tumors were dissected and histologically examined. The results of this work showed the following: 1. 12C ions led to stronger vascular changes compared to photons, independent of dose; 2. Tumor growth was comparable for all radiation doses and modalities until day 21; 3. Nonirradiated, rapidly growing control tumors showed a decrease in all pharmacokinetic parameters (area under the curve, Ktrans, ve, vp) over time; 4. 12C-ion-irradiated tumors showed an earlier increase in area under the curve and Ktrans than photon-irradiated tumors; 5. 12C-ion irradiation resulted in more homogeneous parameter maps and histology compared to photons; and 6. 12C-ion irradiation led to an increased microvascular density and decreased proliferation activity in a largely dose-independent manner compared to photons. Postirradiation changes related to 12C ions and photons were detected using DCE-MRI, and correlated with histological parameters in an anaplastic experimental prostate tumor. In summary, this pilot study demonstrated that exposure to 12C ions increased the perfusion and/or permeability faster and led to larger changes in DCE-MRI parameters resulting in increased vessel density and presumably less hypoxia at the end of the observation period when compared to photons. Within this study no differences were found between curative and sub-curative doses in either modality

    Structure and tribo-mechanical properties of Si- and W-containing amorphous carbon based multilayers

    No full text
    Designing the film architecture of amorphous carbon based systems is effective in tailoring the tribo-mechanical properties. For this purpose, alternating a-C and a-C:X layers, with X = Si or W, were grown with a layer ratio of 1, a bilayer period of ~200 nm, and a bilayers number of 5 in a magnetron sputtering process. By comparing with a-C(:X) monolayers, the structure and tribo-mechanical properties of alternating a-C/a-C:X films were evaluated.Although the bonding state of the a-C network of a-C:X in a-C/a-C:X is comparable to monolayered a-C:X, the multilayer design significantly affects the tribo-mechanical properties. The a-C/a-C:X multilayers exhibit a higher hardness compared to a-C:X. With a coefficient of friction of 0.12 ± 0.01, a-C/a-C:Si shows a low friction as a-C:Si with 0.09 ± 0.01, but the wear rate is significantly lower for a-C/a-C:Si with (3.4 ± 0.7) × 10-7 mm³/Nm than a-C:Si with (8.3 ± 1.0) × 10-7 mm³/Nm. Contrarily, a-C/a-C:W and a-C:W provide similar wear rates of 1.2 to 1.4 × 10-7 mm³/Nm, but the coefficient of friction is lower for a-C/a-C:W with 0.29 ± 0.02 than a-C:W with 0.36 ± 0.01. Hence, the multilayer design is efficient in improving the tribo-mechanical properties of a-C:X based films

    Tuning of solid-to-solid structural transitions in amorphous carbon films by optical pumping and chemical modification

    No full text
    Amorphous carbon (a-C) attracts great attention in tribology research and thin film technologies due to its versatile properties. However, high temperatures and mechanical stresses may cause significant changes in the structural ordering of the a-C network. We present an optical method to initiate structural ordering and to probe solid-to-solid structural transitions of element modified a-C films. A pulsed pump laser introduces heat into the film in a controlled manner, while a second laser probes confocally the first- and second-order Raman scattering signatures of the a-C network. For low pump power, the number of defects and non-sixfold aromatic rings is reduced. A further increase in the laser power leads to sharply evolved changes in the Raman scattering features, indicating a transition from a-C to defected graphite and an effusion of hydrogen. Moreover, graphite-dominant defect relaxation and an enhancement in hexagonal lattice areas occur and, in turn, activate second-order Raman scattering lines. A rising laser power subsequently results in progressive graphitization. Chemical modification of the films with Si or Cu enhances their thermal stability and even shifts the upper thermal limit of the film ablation, while the a-C:W film demonstrates a more efficient enrichment of nanocrystalline graphitic clusters
    corecore