14 research outputs found

    Communal roosting sites are potential ecological traps: experimental evidence in a Neotropical harvestman

    Full text link
    Situations in which animals preferentially settle in low-quality habitat are referred to as ecological traps, and species that aggregate in response to conspecific cues, such as scentmarks, that persist after the animals leave the areamay be especially vulnerable. We tested this hypothesis on harvestmen (Prionostemma sp.) that roost communally in the rainforest understory. Based on evidence that these animals preferentially settle in sites marked with conspecific scent, we predicted that established aggregation sites would continue to attract new recruits even if the animals roosting there perished. To test this prediction, we simulated intense predation by repeatedly removing all individuals from 10 established roosts, and indeed, these sites continued to attract new harvestmen. A more likely reason for an established roost to become unsuitable is a loss of overstory canopy cover caused by treefalls. To investigate this scenario, without felling trees, we established 16 new communal roosts by translocating harvestmen into previously unused sites. Half the release sites were located in intact forest, and half were located in treefall gaps, but canopy cover had no significant effect on the recruitment rate. These results support the inference that communal roost sites are potential ecological traps for species that aggregate in response to conspecific scent

    Niche partitioning in an assemblage of granivorous rodents, and the challenge of community-level conservation.

    No full text
    Coexistence of competing species in the same foraging guild has long puzzled ecologists. In particular, how do small subordinate species persist with larger dominant competitors? This question becomes particularly important when conservation interventions, such as reintroduction or translocation, become necessary for the smaller species. Exclusion of dominant competitors might be necessary to establish populations of some endangered species. Ultimately, however, the goal should be to conserve whole communities. Determining how subordinate species escape competitive exclusion in intact communities could inform conservation decisions by clarifying the ecological conditions and processes required for coexistence at local or regional scales. We tested for spatial and temporal partitioning among six species of native, granivorous rodents using null models, and characterized the microhabitat of each species using resource-selection models. We found that the species' nightly activity patterns are aggregated temporally but segregated spatially. As expected, we found clear evidence that the larger-bodied kangaroo rats drive spatial partitioning, but we also found species-specific microhabitat associations, which suggests that habitat heterogeneity is part of what enables these species to coexist. Restoration of natural disturbance regimes that create habitat heterogeneity, and selection of translocation sites without specific competitors, are among the management recommendations to consider in this case. More generally, this study highlights the need for a community-level approach to conservation and the usefulness of basic ecological data for guiding management decisions

    Increasing generations in captivity is associated with increased vulnerability of Tasmanian devils to vehicle strike following release to the wild

    Get PDF
    Captive breeding of threatened species, for release to the wild, is critical for conservation. This strategy, however, risks producing captive-raised animals with traits poorly suited to the wild. We describe the first study to characterise accumulated consequences of long-term captive breeding on behaviour, by following the release of Tasmanian devils to the wild. We test the impact of prolonged captive breeding on the probability that captive-raised animals are fatally struck by vehicles. Multiple generations of captive breeding increased the probability that individuals were fatally struck, a pattern that could not be explained by other confounding factors (e.g. age or release site). Our results imply that long term captive breeding programs may produce animals that are naïve to the risks of the post-release environment. Our analyses have already induced changes in management policy of this endangered species, and serve as model of productive synergy between ecological monitoring and conservation strategy
    corecore