51 research outputs found

    The California Planet Survey. I. Four New Giant Exoplanets

    Get PDF
    We present precise Doppler measurements of four stars obtained during the past decade at Keck Observatory by the California Planet Survey (CPS). These stars, namely, HD 34445, HD 126614, HD 13931, and Gl 179, all show evidence for a single planet in Keplerian motion. We also present Doppler measurements from the Hobby-Eberly Telescope (HET) for two of the stars, HD 34445 and Gl 179, that confirm the Keck detections and significantly refine the orbital parameters. These planets add to the statistical properties of giant planets orbiting near or beyond the ice line, and merit follow-up by astrometry, imaging, and space-borne spectroscopy. Their orbital parameters span wide ranges of planetary minimum mass (M sin i = 0.38-1.9 M(Jup)), orbital period (P = 2.87-11.5 yr), semimajor axis (a = 2.1-5.2 AU), and eccentricity (e = 0.02-0.41). HD 34445 b (P = 2.87 yr, M sin i = 0.79 MJup, e = 0.27) is a massive planet orbiting an old, G-type star. We announce a planet, HD 126614 Ab, and an M dwarf, HD 126614 B, orbiting the metal-rich star HD 126614 (which we now refer to as HD 126614 A). The planet, HD 126614 Ab, has minimum mass M sin i = 0.38 MJup and orbits the stellar primary with period P = 3.41 yr and orbital separation a = 2.3 AU. The faint M dwarf companion, HD 126614 B, is separated from the stellar primary by 489 mas (33 AU) and was discovered with direct observations using adaptive optics and the PHARO camera at Palomar Observatory. The stellar primary in this new system, HD 126614 A, has the highest measured metallicity ([ Fe/ H] = + 0.56) of any known planet-bearing star. HD 13931 b (P = 11.5 yr, M sin i = 1.88 MJup, e = 0.02) is a Jupiter analog orbiting a near solar twin. Gl 179 b (P = 6.3 yr, M sin i = 0.82 M(Jup), e = 0.21) is a massive planet orbiting a faint M dwarf. The high metallicity of Gl 179 is consistent with the planet-metallicity correlation among M dwarfs, as documented recently by Johnson & Apps.NSF AST-0702821NASA NNX06AH52GMcDonald Observator

    The EXPRES Stellar Signals Project II. State of the Field in Disentangling Photospheric Velocities

    Get PDF
    Measured spectral shifts due to intrinsic stellar variability (e.g., pulsations, granulation) and activity (e.g., spots, plages) are the largest source of error for extreme-precision radial-velocity (EPRV) exoplanet detection. Several methods are designed to disentangle stellar signals from true center-of-mass shifts due to planets. The Extreme-precision Spectrograph (EXPRES) Stellar Signals Project (ESSP) presents a self-consistent comparison of 22 different methods tested on the same extreme-precision spectroscopic data from EXPRES. Methods derived new activity indicators, constructed models for mapping an indicator to the needed radial-velocity (RV) correction, or separated out shape- and shift-driven RV components. Since no ground truth is known when using real data, relative method performance is assessed using the total and nightly scatter of returned RVs and agreement between the results of different methods. Nearly all submitted methods return a lower RV rms than classic linear decorrelation, but no method is yet consistently reducing the RV rms to sub-meter-per-second levels. There is a concerning lack of agreement between the RVs returned by different methods. These results suggest that continued progress in this field necessitates increased interpretability of methods, high-cadence data to capture stellar signals at all timescales, and continued tests like the ESSP using consistent data sets with more advanced metrics for method performance. Future comparisons should make use of various well-characterized data sets—such as solar data or data with known injected planetary and/or stellar signals—to better understand method performance and whether planetary signals are preserved

    The problem of constitutional legitimation: what the debate on electoral quotas tells us about the legitimacy of decision-making rules in constitutional choice

    Get PDF
    Proponents of electoral quotas have a ‘dependent interpretation’ of democracy, i.e. they have formed an opinion on which decision-making rules are fair on the basis of their prior approval of the outcomes these rules are likely to generate. The article argues that this position causes an irresolvable problem for constitutional processes that seek to legitimately enact institutional change. While constitutional revision governed by formal equality allows the introduction of electoral quotas, this avenue is normatively untenable for proponents of affirmative action if they are consistent with their claim that formal equality reproduces biases and power asymmetries at all levels of decision-making. Their critique raises a fundamental challenge to the constitutional revision rule itself as equally unfair. Without consensus on the decision-making process by which new post-constitutional rules can be legitimately enacted, procedural fairness becomes an issue impossible to resolve at the stage of constitutional choice. This problem of legitimation affects all instances of constitutional choice in which there are opposing views not only about the desired outcome of the process but also about the decision-making rules that govern constitutional choice

    The impact of women in congress

    Full text link

    Change among party activists: National convention delegates, 1972-1981.

    Full text link
    When unconventional political activists captured the 1972 Democratic national convention, many feared that these activists who rejected traditional norms about the role of the parties would destroy the parties--especially the Democratic party. However, analysis of the Center for Political Studies' 1972-1981 panel survey of national convention delegates shows that the predicted revolution did not occur. By 1981, the less conventional members of the 1972 Democratic and Republican delegations had adopted more traditional attitudes about the role of the party organization and they were more willing to compromise. The power-dependence model was adapted to explain why the activists were socialized into traditional organizational maintenance norms and to examine the ramifications of this socialization for involvement and motivational investment between 1972 and 1981. As expected, the model was useful for explaining change among the unconventional, insurgent Democrats. It was not as useful in accounting for change among Republican unconventionals, who were--by virtue of their selection by the party as delegates--already well integrated into their political party. The insurgents assimilated largely because they increased their attachment to their political party over the nine-year period. Socialization affected activists' attitudes and behaviors in at least two ways. First, socialization into the traditional organizational maintenance norms was associated with continued political involvement. Activists with low investment in goals or who were highly committed to policy goals were more likely to remain politically active if they were socialized, suggesting that the traditional party organizational maintenance norms were useful for maintaining interest in an organization that requires compromise. However, socialization was not necessary for involvement. Highly motivated activists (except those motivated by policy goals) were likely to remain active regardless of whether they changed or not. Second, socialization into traditional party norms contributed to increased motivational investment in some goals, especially among those who had originally valued highly their party work or who had few alternative organizational involvements. The implications of these findings for political parties and for the power-dependence model are discussed.Ph.D.Political scienceUniversity of Michiganhttp://deepblue.lib.umich.edu/bitstream/2027.42/161791/1/8812885.pd
    • …
    corecore