25 research outputs found

    The gastrointestinal microbiome: a malleable, third genome of mammals

    Get PDF
    The nonpathogenic, mutualistic bacteria of the mammalian gastrointestinal tract provide a number of benefits to the host. Recent reports have shown how the aggregate genomes of gastrointestinal bacteria provide novel benefits by functioning as the third major genome in mammals along with the nuclear and mitochondrial genomes. Consequently, efforts are underway to elucidate the complexity of the organisms comprising the unique ecosystem of the gastrointestinal tract, as well as those associated with other epidermal surfaces. The current knowledge of the gastrointestinal microbiome, its relationship to human health and disease with a particular focus on mammalian physiology, and efforts to alter its composition as a novel therapeutic approach are reviewed

    Campylobacter jejuni Induces Colitis Through Activation of Mammalian Target of Rapamycin Signaling

    Get PDF
    Campylobacter jejuni is the worldwide leading cause of bacterial-induced enteritis. The molecular and cellular events that lead to campylobacteriosis are poorly understood. We identify mammalian target of rapamycin (mTOR) as a signaling pathway that leads to C jejuni-induced intestinal inflammation

    A Gnotobiotic Mouse Model Demonstrates That Dietary Fiber Protects against Colorectal Tumorigenesis in a Microbiota- and Butyrate-Dependent Manner

    Get PDF
    It is controversial whether dietary fiber protects against colorectal cancer because of conflicting results from human epidemiologic studies. However, these studies and mouse models of colorectal cancer have not controlled the composition of gut microbiota, which ferment fiber into short-chain fatty acids such as butyrate. Butyrate is noteworthy because it has energetic and epigenetic functions in colonocytes and tumorsuppressive properties in colorectal-cancer cell lines. We utilized gnotobiotic mouse models colonized with wild-type or mutant strains of a butyrate-producing bacterium to demonstrate that fiber does have a potent tumor-suppressive effect but in a microbiota- and butyrate-dependent manner. Furthermore, due to the Warburg effect, butyrate was metabolized less in tumors where it accumulated and functioned as an HDAC inhibitor to stimulate histone acetylation and affect apoptosis and cell proliferation. To support the relevance of this mechanism in human cancer, we demonstrate that butyrate and histone-acetylation levels are elevated in colorectal adenocarcinomas compared to normal colonic tissues

    Gnotobiotic IL-10−/−; NF-κBEGFP Mice Develop Rapid and Severe Colitis Following Campylobacter jejuni Infection

    Get PDF
    Limited information is available on the molecular mechanisms associated with Campylobacter jejuni (C. jejuni) induced food-borne diarrheal illnesses. In this study, we investigated the function of TLR/NF-κB signaling in C. jejuni induced pathogenesis using gnotobiotic IL-10−/−; NF-κBEGFP mice. In vitro analysis showed that C. jejuni induced IκB phosphorylation, followed by enhanced NF-κB transcriptional activity and increased IL-6, MIP-2α and NOD2 mRNA accumulation in infected-mouse colonic epithelial cells CMT93. Importantly, these events were blocked by molecular delivery of an IκB inhibitor (Ad5IκBAA). NF-κB signalling was also important for C.jejuni-induced cytokine gene expression in bone marrow-derived dendritic cells. Importantly, C. jejuni associated IL-10−/−; NF-κBEGFP mice developed mild (day 5) and severe (day 14) ulcerating colonic inflammation and bloody diarrhea as assessed by colonoscopy and histological analysis. Macroscopic analysis showed elevated EGFP expression indicating NF-κB activation throughout the colon of C. jejuni associated IL-10−/−; NF-κBEGFP mice, while fluorescence microscopy revealed EGFP positive cells to be exclusively located in lamina propria mononuclear cells. Pharmacological NF-κB inhibition using Bay 11-7085 did not ameliorate C. jejuni induced colonic inflammation. Our findings indicate that C. jejuni induces rapid and severe intestinal inflammation in a susceptible host that correlates with enhanced NF-κB activity from lamina propria immune cells

    Genomic Diversity in Campylobacter jejuni: Identification of C. jejuni 81-176-Specific Genes

    Get PDF
    Since the publication of the complete genomic sequence of Campylobacter jejuni NCTC 11168 in February 2000, evidence has been compiling that suggests C. jejuni strains exhibit high genomic diversity. In order to investigate this diversity, the unique genomic DNA sequences from a nonsequenced Campylobacter strain, C. jejuni 81-176, were identified by comparison with C. jejuni NCTC 11168 by using a shotgun DNA microarray approach. Up to 63 kb of new chromosomal DNA sequences unique to this pathogen were obtained. Eighty-six open reading frames were identified by the presence of uninterrupted coding regions encoding a minimum of 40 amino acids. In addition, this study shows that the whole-plasmid shotgun microarray approach is effective and provides a comprehensive coverage of DNA regions that differ between two closely related genomes. The two plasmids harbored by this Campylobacter strain, pTet and pVir, were also sequenced, with coverages of 2.5- and 2.9-fold, respectively, representing 72 and 92% of their complete nucleotide sequences. The unique chromosomal genes encode proteins involved in capsule and lipooligosaccharide biosynthesis, restriction and modification systems, and respiratory metabolism. Several of these unique genes are likely associated with C. jejuni 81-176 fitness and virulence. Interestingly, the comparison of C. jejuni 81-176 unique genes with those of C. jejuni ATCC 43431 revealed a single gene which encodes a probable TraG-like protein. The product of this gene might be associated with the mechanism of C. jejuni invasion into epithelial cells. In conclusion, this study extends the repertoire of C. jejuni genes and thus will permit the construction of a composite and more comprehensive microarray of C. jejuni

    Identification of Campylobacter jejuni ATCC 43431-Specific Genes by Whole Microbial Genome Comparisons

    Get PDF
    This study describes a novel approach to identify unique genomic DNA sequences from the unsequenced strain C. jejuni ATCC 43431 by comparison with the sequenced strain C. jejuni NCTC 11168. A shotgun DNA microarray was constructed by arraying 9,600 individual DNA fragments from a C. jejuni ATCC 43431 genomic library onto a glass slide. DNA fragments unique to C. jejuni ATCC 43431 were identified by competitive hybridization to the array with genomic DNA of C. jejuni NCTC 11168. The plasmids containing unique DNA fragments were sequenced, allowing the identification of up to 130 complete and incomplete genes. Potential biological roles were assigned to 66% of the unique open reading frames. The mean G+C content of these unique genes (26%) differs significantly from the G+C content of the entire C. jejuni genome (30.6%). This suggests that they may have been acquired through horizontal gene transfer from an organism with a G+C content lower than that of C. jejuni. Because the two C. jejuni strains differ by Penner serotype, a large proportion of the unique ATCC 43431 genes encode proteins involved in lipooligosaccharide and capsular biosynthesis, as expected. Several unique open reading frames encode enzymes which may contribute to genetic variability, i.e., restriction-modification systems and integrases. Interestingly, many of the unique C. jejuni ATCC 43431 genes show identity with a possible pathogenicity island from Helicobacter hepaticus and components of a potential type IV secretion system. In conclusion, this study provides a valuable resource to further investigate Campylobacter diversity and pathogenesis

    Iron Acquisition and Regulation in Campylobacter jejuni

    Get PDF
    Iron affects the physiology of bacteria in two different ways: as a micronutrient for bacterial growth and as a catalyst for the formation of hydroxyl radicals. In this study, we used DNA microarrays to identify the C. jejuni genes that have their transcript abundance affected by iron availability. The transcript levels of 647 genes were affected after the addition of iron to iron-limited C. jejuni cells. Several classes of affected genes were revealed within 15 min, including immediate-early response genes as well as those specific to iron acquisition and metabolism. In contrast, only 208 genes were differentially expressed during steady-state experiments comparing iron-rich and iron-limited growth conditions. As expected, genes annotated as being involved in either iron acquisition or oxidative stress defense were downregulated during both time course and steady-state experiments, while genes encoding proteins involved in energy metabolism were upregulated. Because the level of protein glycosylation increased with iron limitation, iron may modulate the level of C. jejuni virulence by affecting the degree of protein glycosylation. Since iron homeostasis has been shown to be Fur regulated in C. jejuni, an isogenic fur mutant was used to define the Fur regulon by transcriptome profiling. A total of 53 genes were Fur regulated, including many genes not previously associated with Fur regulation. A putative Fur binding consensus sequence was identified in the promoter region of most iron-repressed and Fur-regulated genes. Interestingly, a fur mutant was found to be significantly affected in its ability to colonize the gastrointestinal tract of chicks, highlighting the importance of iron homeostasis in vivo. Directed mutagenesis of other genes identified by the microarray analyses allowed the characterization of the ferric enterobactin receptor, previously named CfrA. Chick colonization assays indicated that mutants defective in enterobactin-mediated iron acquisition were unable to colonize the gastrointestinal tract. In addition, a mutation in a receptor (Cj0178) for an uncharacterized iron source also resulted in reduced colonization potential. Overall, this work documents the complex response of C. jejuni to iron availability, describes the genetic network between the Fur and iron regulons, and provides insight regarding the role of iron in C. jejuni colonization in vivo

    <i>C. jejuni</i> induces rapid and progressive severe colonic inflammation in IL-10<sup>−/−</sup>; NF-κB<sup>EGFP</sup> mice.

    No full text
    <p>Gnotobiotic IL-10<sup>−/−</sup>; NF-κB<sup>EGFP</sup> mice and control IL-10<sup>wt/wt</sup>; NF-κB<sup>EGFP</sup> mice were associated with <i>C. jejuni</i> by oral gavage (10<sup>8</sup> cfu/mouse). Inflammation was evaluated macroscopically in vivo using a murine miniature endoscope in IL-10<sup>wt/wt</sup>; NF-κB<sup>EGFP</sup> control mice (<a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0007413#pone-0007413-g002" target="_blank">Fig. 2A</a>, n = 13) and IL-10<sup>−/−</sup>; NF-κB<sup>EGFP</sup> mice on day 5 and 14 (<a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0007413#pone-0007413-g002" target="_blank">Fig. 2B</a>, n = 12). The data are representative for two additional experiments.</p
    corecore