5 research outputs found
MRI-based radiomic prognostic signature for locally advanced oral cavity squamous cell carcinoma: development, testing and comparison with genomic prognostic signatures
Background. At present, the prognostic prediction in advanced oral cavity squamous cell carcinoma (OCSCC) is based on the tumor-node-metastasis (TNM) staging system, and the most used imaging modality in these patients is magnetic resonance image (MRI). With the aim to improve the prediction, we developed an MRI-based radiomic signature as a prognostic marker for overall survival (OS) in OCSCC patients and compared it with published gene expression signatures for prognosis of OS in head and neck cancer patients, replicated herein on our OCSCC dataset.MethodsFor each patient, 1072 radiomic features were extracted from T1 and T2-weighted MRI (T1w and T2w). Features selection was performed, and an optimal set of five of them was used to fit a Cox proportional hazard regression model for OS. The radiomic signature was developed on a multi-centric locally advanced OCSCC retrospective dataset (n = 123) and validated on a prospective cohort (n = 108).ResultsThe performance of the signature was evaluated in terms of C-index (0.68 (IQR 0.66-0.70)), hazard ratio (HR 2.64 (95% CI 1.62-4.31)), and high/low risk group stratification (log-rank p < 0.001, Kaplan-Meier curves). When tested on a multi-centric prospective cohort (n = 108), the signature had a C-index of 0.62 (IQR 0.58-0.64) and outperformed the clinical and pathologic TNM stage and six out of seven gene expression prognostic signatures. In addition, the significant difference of the radiomic signature between stages III and IVa/b in patients receiving surgery suggests a potential association of MRI features with the pathologic stage.ConclusionsOverall, the present study suggests that MRI signatures, containing non-invasive and cost-effective remarkable information, could be exploited as prognostic tools
Biological properties of hypoxia-related gene expression models/signatures on clinical benefit of anti-EGFR treatment in two head and neck cancer window-of-opportunity trials
Not applicable (letter
An Inflammatory Signature to Predict the Clinical Benefit of First-Line Cetuximab Plus Platinum-Based Chemotherapy in Recurrent/Metastatic Head and Neck Cancer
Epidermal growth factor receptor (EGFR) pathway has been shown to play a crucial role in several inflammatory conditions and host immune-inflammation status is related to tumor prognosis. This study aims to evaluate the prognostic significance of a four-gene inflammatory signature in recurrent/metastatic (R/M) head and neck squamous cell carcinoma (HNSCC) patients treated with the EGFR inhibitor cetuximab plus chemotherapy. The inflammatory signature was assessed on 123 R/M HNSCC patients, enrolled in the multicenter trial B490 receiving first-line cetuximab plus platinum-based chemotherapy. The primary endpoint of the study was progression free survival (PFS), while secondary endpoints were overall survival (OS) and objective response rate (ORR). The patient population was subdivided into 3 groups according to the signature score groups. The four-genes-signature proved a significant prognostic value, resulting in a median PFS of 9.2 months in patients with high vs. 6.2 months for intermediate vs. 3.9 months for low values (p = 0.0016). The same findings were confirmed for OS, with median time of 18.4, 13.4, and 7.5 months for high, intermediate, and low values of the score, respectively (p = 0.0001). When ORR was considered, the signature was significantly higher in responders than in non-responders (p = 0.0092), reaching an area under the curve (AUC) of 0.65 (95% CI: 0.55-0.75). Our findings highlight the role of inflammation in the response to cetuximab and chemotherapy in R/M-HNSCC and may have translational implications for improving treatment selection
Association of a gene-expression subtype to outcome and treatment response in patients with recurrent/metastatic head and neck squamous cell carcinoma treated with nivolumab
Background Immune checkpoint inhibitors have been approved and currently used in the clinical management of recurrent and metastatic head and neck squamous cell carcinoma (R/M HNSCC) patients. The reported benefit in clinical trials is variable and heterogeneous. Our study aims at exploring and comparing the predictive role of gene-expression signatures with classical biomarkers for immunotherapy-treated R/M HNSCC patients in a multicentric phase IIIb trial.Methods Clinical data were prospectively collected in Nivactor tiral (single-arm, open-label, multicenter, phase IIIb clinical trial in platinum-refractory HNSCC treated with nivolumab). Findings were validated in an external independent cohort of immune-treated HNSCC patients, divided in long-term and short-term survivors (overall survival >18 and <6 months since the start of immunotherapy, respectively). Pretreatment tumor tissue specimen from immunotherapy-treated R/M HNSCC patients was used for PD-L1 (Tumor Proportion Score; Combined Positive Score (CPS)) and Tumor Mutational Burden (Oncopanel TSO500) evaluation and gene expression profiling; classical biomarkers and immune signatures (retrieved from literature) were challenged in the NIVACTOR dataset.Results Cluster-6 (Cl6) stratification of NIVACTOR cases in high score (n=16, 20%) and low score (n=64, 80%) demonstrated a statistically significant and clinically meaningful improvement in overall survival in the high-score cases (p=0.00028; HR=4.34, 95% CI 1.84 to 10.22) and discriminative ability reached area under the curve (AUC)=0.785 (95% CI 0.603 to 0.967). The association of high-score Cl6 with better outcome was also confirmed in: (1) NIVACTOR progression-free survival (p=4.93E-05; HR=3.71, 95% CI 1.92 to 7.18) and objective-response-rate (AUC=0.785; 95% CI 0.603 to 0.967); (2) long survivors versus short survivors (p=0.00544). In multivariate Cox regression analysis, Cl6 was independent from Eastern Cooperative Oncology Group performance status, PDL1-CPS, and primary tumor site.Conclusions These data highlight the presence of underlying biological differences able to predict survival and response following treatment with immunotherapy in platinum-refractory R/M HNSCC that could have translational implications improving treatment selection.Trial registration number EudraCT Number: 2017-000562-30
Heart Rate in Patients with SARS-CoV-2 Infection: Prevalence of High Values at Discharge and Relationship with Disease Severity
The most common arrhythmia associated with COronaVIrus-related Disease (COVID) infection is sinus tachycardia. It is not known if high Heart Rate (HR) in COVID is simply a marker of higher systemic response to sepsis or if its persistence could be related to a long-term autonomic dysfunction. The aim of our work is to assess the prevalence of elevated HR at discharge in patients hospitalized for COVID-19 and to evaluate the variables associated with it. We enrolled 697 cases of SARS-CoV2 infection admitted in our hospital after February 21 and discharged within 23 July 2020. We collected data on clinical history, vital signs, laboratory tests and pharmacological treatment. Severe disease was defined as the need for Intensive Care Unit (ICU) admission and/or mechanical ventilation. Median age was 59 years (first-third quartile 49, 74), and male was the prevalent gender (60.1%). 84.6% of the subjects showed a SARS-CoV-2 related pneumonia, and 13.2% resulted in a severe disease. Mean HR at admission was 90 ± 18 bpm with a mean decrease of 10 bpm to discharge. Only 5.5% of subjects presented HR > 100 bpm at discharge. Significant predictors of discharge HR at multiple linear model were admission HR (mean increase = β = 0.17 per bpm, 95% CI 0.11; 0.22, p < 0.001), haemoglobin (β = −0.64 per g/dL, 95% CI −1.19; −0.09, p = 0.023) and severe disease (β = 8.42, 95% CI 5.39; 11.45, p < 0.001). High HR at discharge in COVID-19 patients is not such a frequent consequence, but when it occurs it seems strongly related to a severe course of the disease