86 research outputs found

    Transport of small anionic and neutral solutes through chitosan membranes: Dependence on cross-linking and chelation of divalent cations

    Get PDF
    Chitosan membranes were prepared by solvent casting and cross-linked with glutaraldehyde at several ratios under homogeneous conditions. The cross-linking degree, varying from 0 to 20%, is defined as the ratio between the total aldehyde groups and the amine groups of chitosan. Permeability experiments were conducted using a side-by-side diffusion cell to determine the flux of small molecules of similar size but with different chemical moieties, either ionized (benzoic acid, salicylic acid, and phthalic acid) or neutral (2-phenylethanol) at physiological pH. The permeability of the different model molecules revealed to be dependent on the affinity of those structurally similar molecules to chitosan. The permeability of the salicylate anion was significantly enhanced by the presence of metal cations commonly present in biological fluids, such as calcium and magnesium, but remained unchanged for the neutral 2-phenylethanol. This effect could be explained by the chelation of metal cations on the amine groups of chitosan, which increased the partition coefficient. The cross-linking degree was also correlated with the permeability and partition coefficient. The change in the permeation properties of chitosan to anionic solutes in the presence of these metallic cations is an important result and should be taken into consideration when trying to make in vitro predictions of the drug release from chitosan-based controlled release systems

    The impact of polyphenols on chondrocyte growth and survival: a preliminary report

    Get PDF
    Background: Imbalances in the functional binding of fibroblast growth factors (FGFs) to their receptors (FGFRs) have consequences for cell proliferation and differentiation that in chondrocytes may lead to degraded cartilage. The toxic, proinflammatory, and oxidative response of cytokines and FGFs can be mitigated by dietary polyphenols. Objective: We explored the possible effects of polyphenols in the management of osteoarticular diseases using a model based on the transduction of a mutated human FGFR3 (G380R) in murine chondrocytes. This mutation is present in most cases of skeletal dysplasia and is responsible for the overexpression of FGFR3 that, in the presence of its ligand, FGF9, results in toxic effects leading to altered cellular growth. Design: Different combinations of dietary polyphenols derived from plant extracts were assayed in FGFR3 (G380R) mutated murine chondrocytes, exploring cell survival, chloride efflux, extracellular matrix (ECM) generation, and grade of activation of mitogen-activated protein kinases. Results: Bioactive compounds from Hibiscus sabdariffa reversed the toxic effects of FGF9 and restored normal growth, suggesting a probable translation to clinical requests in humans. Indeed, these compounds activated the intracellular chloride efflux, increased ECM generation, and stimulated cell proliferation. The inhibition of mitogen-activated protein kinase phosphorylation was interpreted as the main mechanism governing these beneficial effects. Conclusions: These findings support the rationale behind the encouragement of the development of drugs that repress the overexpression of FGFRs and suggest the dietary incorporation of supplementary nutrients in the management of degraded cartilage.The authors are grateful for the constant support provided by the Hospital Universitari de Sant Joan and the Universitat Rovira i Virgili. Salvador Fernández-Arroyo is the recipient of a Sara Borrell grant (CD12/00672) from the Instituto de Salud Carlos III, Madrid, Spain. The authors also thank the Andalusian Regional Government Council of Innovation and Science for the Excellence Project P11-CTS-7625 and Generalitat Valenciana for the project PROMETEO/2012/007. This work was also supported by projects of the Fundación Areces and the Fundación MAGAR

    Identification of broad-spectrum mmp inhibitors by virtual screening

    No full text
    Matrix metalloproteinases (MMPs) are the family of proteases that are mainly responsible for degrading extracellular matrix (ECM) components. In the skin, the overexpression of MMPs as a result of ultraviolet radiation triggers an imbalance in the ECM turnover in a process called pho-toaging, which ultimately results in skin wrinkling and premature skin ageing. Therefore, the inhibition of different enzymes of the MMP family at a topical level could have positive implications for photoaging. Considering that the MMP catalytic region is mostly conserved across different enzymes of the MMP family, in this study we aimed to design a virtual screening (VS) workflow to identify broad-spectrum MMP inhibitors that can be used to delay the development of photoaging. Our in silico approach was validated in vitro with 20 VS hits from the Specs library that were not only structurally different from one another but also from known MMP inhibitors. In this bioactivity assay, 18 of the 20 compounds inhibit at least one of the assayed MMPs at 100 μM (with 5 of them showing around 50% inhibition in all the tested MMPs at this concentration). Finally, this VS was used to identify natural products that have the potential to act as broad-spectrum MMP inhibitors and be used as a treatment for photoaging
    corecore