1,890 research outputs found

    Anisotropic Dark Energy and the Generalized Second Law of Thermodynamics

    Full text link
    We consider a Bianchi type II model in which anisotropic dark energy is interacting with dark matter and anisotropic radiation. With this scenario, we investigate the validity of the generalized second law of thermodynamics. It is concluded that the validity of this law depends on different parameters like shear, skewness and equation of state.Comment: 12 pages, accepted for publication in Phys. Scr. arXiv admin note: text overlap with arXiv:1008.0692 and arXiv:1106.241

    Density Evolution in the New Modified Chaplygin Gas Model

    Full text link
    In this paper, we have considered new modified Chaplygin gas (NMCG) model which interpolates between radiation at early stage and Λ\LambdaCDM at late stage. This model is regarded as a unification of dark energy and dark matter (with general form of matter). We have derived the density parameters from the equation of motion for the interaction between dark energy and dark matter. Also we have studied the evolution of the various components of density parameters.Comment: 6 Latex pages, 4 figures, RevTex styl

    Nonlinear Schr\"odinger Equation with Spatio-Temporal Perturbations

    Get PDF
    We investigate the dynamics of solitons of the cubic Nonlinear Schr\"odinger Equation (NLSE) with the following perturbations: non-parametric spatio-temporal driving of the form f(x,t)=aexp[iK(t)x]f(x,t) = a \exp[i K(t) x], damping, and a linear term which serves to stabilize the driven soliton. Using the time evolution of norm, momentum and energy, or, alternatively, a Lagrangian approach, we develop a Collective-Coordinate-Theory which yields a set of ODEs for our four collective coordinates. These ODEs are solved analytically and numerically for the case of a constant, spatially periodic force f(x)f(x). The soliton position exhibits oscillations around a mean trajectory with constant velocity. This means that the soliton performs, on the average, a unidirectional motion although the spatial average of the force vanishes. The amplitude of the oscillations is much smaller than the period of f(x)f(x). In order to find out for which regions the above solutions are stable, we calculate the time evolution of the soliton momentum P(t)P(t) and soliton velocity V(t)V(t): This is a parameter representation of a curve P(V)P(V) which is visited by the soliton while time evolves. Our conjecture is that the soliton becomes unstable, if this curve has a branch with negative slope. This conjecture is fully confirmed by our simulations for the perturbed NLSE. Moreover, this curve also yields a good estimate for the soliton lifetime: the soliton lives longer, the shorter the branch with negative slope is.Comment: 21 figure

    Electric Switching of the Charge-Density-Wave and Normal Metallic Phases in Tantalum Disulfide Thin-Film Devices

    Full text link
    We report on switching among three charge-density-wave phases - commensurate, nearly commensurate, incommensurate - and the high-temperature normal metallic phase in thin-film 1T-TaS2 devices induced by application of an in-plane electric field. The electric switching among all phases has been achieved over a wide temperature range, from 77 K to 400 K. The low-frequency electronic noise spectroscopy has been used as an effective tool for monitoring the transitions, particularly the switching from the incommensurate charge-density-wave phase to the normal metal phase. The noise spectral density exhibits sharp increases at the phase transition points, which correspond to the step-like changes in resistivity. Assignment of the phases is consistent with low-field resistivity measurements over the temperature range from 77 K to 600 K. Analysis of the experimental data and calculations of heat dissipation suggest that Joule heating plays a dominant role in the electric-field induced transitions in the tested 1T-TaS2 devices on Si/SiO2 substrates. The possibility of electrical switching among four different phases of 1T-TaS2 is a promising step toward nanoscale device applications. The results also demonstrate the potential of noise spectroscopy for investigating and identifying phase transitions in materials.Comment: 32 pages, 7 figure

    Gravitational collapse due to dark matter and dark energy in the brane world scenario

    Full text link
    Gravitational collapse of FRW brane world embedded in a conformaly flat bulk is considered for matter cloud consists of dark matter and dark energy with equation of state p=ϵρp=\epsilon \rho (ϵ<1/3)(\epsilon<-{1/3}). The effect of dark matter and dark energy is being considered first separately and then a combination of them both with and without interaction. In some cases the collapse leads to black hole in some other cases naked singularity appears.Comment: 10 Latex Pages, RevTex style, 4 figure

    Grounded reality meets machine learning: A deep-narrative analysis framework for energy policy research

    Get PDF
    Text-based data sources like narratives and stories have become increasingly popular as critical insight generator in energy research and social science. However, their implications in policy application usually remain superficial and fail to fully explo
    corecore